E-Print Archive

There are 4371 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Neupert Effect of Flare UltraViolet and Soft X-ray Emissions View all abstracts by submitter

Jiong Qiu   Submitted: 2021-01-27 21:34

We model the Neupert effect that relates flare heating energy with the observed SXR emission. The traditional form of the Neupert effect refers to the correlation between the time-integrated HXR or microwave light curve and the SXR light curve. In this paper, instead, we use as the proxy for heating energy the ultraviolet (UV) emission at the foot-points of flare loops, and modify the model of the Neupert effect by taking into account the discrete nature of flare heating as well as cooling. In the modified empirical model, spatially resolved UV lightcurves from the transition region or upper chromosphere are each convolved with a kernel function characterizing the decay of the flare loop emission. Contributions by all loops are summed to compare with the observed total SXR emission. The model has successfully reproduced the observed SXR emission from its rise to decay. To estimate heating energies in flare loops, we also employ the UV Foot-point Calorimeter (UFC) method that infers heating rates in flare loops from these UV light curves and models evolution of flare loops with a zero-dimensional hydrodynamic code. The experiments show that a multitude of impulsive heating events do not well reproduce the observed flare SXR light curve, but a two-phase heating model leads to a better agreement with observations. Comparison of the two models of the Neupert effect further allows us to calibrate the UFC method, and improve the estimate of heating rates in flare loops continuously formed by magnetic reconnection throughout the flare evolution.

Authors: Jiong Qiu
Projects: SDO-AIA

Publication Status: accepted in ApJ
Last Modified: 2021-01-28 12:22
Go to main E-Print page  Sequential Lid Removal in a Triple-decker Chain of CME-producing Solar Eruptions  Thermal-nonthermal energy partition in solar flares derived from X-ray, EUV, and bolometric observations  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University