E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Quasi-Periodic Particle Acceleration in a Solar Flare View all abstracts by submitter

Brendan Clarke   Submitted: 2021-02-10 14:23

A common feature of electromagnetic emission from solar flares is the presence of intensity pulsations that vary as a function of time. Known as quasi-periodic pulsations (QPPs), these variations in flux appear to include periodic components and characteristic time-scales. Here, we analyse a GOES M3.7 class flare exhibiting pronounced QPPs across a broad band of wavelengths using imaging and time-series analysis. We identify QPPs in the timeseries of X-ray, low frequency radio and EUV wavelengths using wavelet analysis, and localise the region of the flare site from which the QPPs originate via X-ray and EUV imaging. It was found that the pulsations within the 171 Ȧ, 1600 Ȧ, soft X-ray (SXR), and hard X-ray (HXR) light curves yielded similar periods of ∼122 s, ∼131s, ∼123 s, and ∼137 s, respectively, indicating a common progenitor. The low frequency radio emission at 2.5 MHz contained a longer period of ∼231 s. Imaging analysis indicates that the location of the X-ray and EUV pulsations originates from a HXR footpoint linked to a system of nearby open magnetic field lines. Our results suggest that intermittent particle acceleration, likely due to 'bursty' magnetic reconnection, is responsible for the QPPs. The precipitating electrons accelerated towards the chromosphere produce the X-ray and EUV pulsations, while the escaping electrons result in low frequency radio pulses in the form of type III radio bursts. The modulation of the reconnection process, resulting in episodic particle acceleration, explains the presence of these QPPs across the entire spatial range of flaring emission.

Authors: Brendan P. Clarke, Laura A. Hayes, Peter T. Gallagher, Shane A. Maloney, Eoin P. Carley
Projects: Fermi/GBM,GOES X-rays,RHESSI,SDO-AIA,SDO-HMI,Wind

Publication Status: Accepted
Last Modified: 2021-02-10 23:38
Go to main E-Print page   Transition to turbulence in nonuniform coronal loops driven by torsional Alfven waves   Relationship between three-dimensional velocity of filament eruptions and CME association  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University