E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Mass of prominences experiencing failed eruptions View all abstracts by submitter

Boris Filippov   Submitted: 2021-03-08 10:27

A number of solar filaments/prominences demonstrate failed eruptions, when a filament at first suddenly starts to ascend and then decelerates and stops at some greater height in the corona. The mechanism of the termination of eruptions is not clear yet. One of the confining forces able to stop the eruption is the gravity force. Using a simple model of a partial current-carrying torus loop anchored to the photosphere and photospheric magnetic field measurements as the boundary condition for the potential magnetic field extrapolation into the corona, we estimated masses of 15 eruptive filaments. The values of the filament mass show rather wide distribution in the range of 4 1015 270 1016 g. Masses of the most of filaments, laying in the middle of the range, are in accordance with estimations made earlier on the basis of spectroscopic and white-light observations.

Authors: B. Filippov
Projects: None

Publication Status: Accepted for publication in PASA
Last Modified: 2021-03-09 15:33
Go to main E-Print page  Large-amplitude prominence oscillations following the impact by a coronal jet  Relative field line helicity of a large eruptive solar active region  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University