E-Print Archive

There are 4396 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Fast magnetoacoustic wave trains: from tadpoles to boomerangs View all abstracts by submitter

Dmitrii Kolotkov   Submitted: 2021-05-31 03:04

Rapidly propagating fast magnetoacoustic wave trains guided by field-aligned plasma non-uniformities are confidently observed in the Sun's corona. Observations at large heights suggest that fast wave trains can travel long distances from the excitation locations. We study characteristic time signatures of fully developed, dispersive fast magnetoacoustic wave trains in field-aligned zero-beta plasma slabs in the linear regime. Fast wave trains are excited by a spatially localised impulsive driver and propagate along the waveguide as prescribed by the waveguide-caused dispersion. In slabs with steeper transverse density profiles, developed wave trains are shown to consist of three distinct phases: a long-period quasi-periodic phase with the oscillation period shortening with time, a multi-periodic (peloton) phase in which distinctly different periods co-exist, and a short-lived periodic Airy phase. The appearance of these phases is attributed to a non-monotonic dependence of the fast wave group speed on the parallel wavenumber due to the waveguide dispersion, and is shown to be different for axisymmetric (sausage) and non-axisymmetric (kink) modes. In wavelet analysis, this corresponds to the transition from the previously known tadpole shape to a new boomerang shape of the wave train spectrum, with two well-pronounced arms at shorter and longer periods. We describe a specific previously published radio observation of a coronal fast wave train, highly suggestive of a change of the wavelet spectrum from a tadpole to a boomerang, broadly consistent with our modelling. The applicability of these boomerang-shaped fast wave trains for probing the transverse structuring of the waveguiding coronal plasma is discussed.

Authors: Dmitrii Y. Kolotkov, Valery M. Nakariakov, Guy Moss, Paul Shellard
Projects: None

Publication Status: Accepted for publication in MNRAS
Last Modified: 2021-05-31 11:55
Go to main E-Print page  Are the Magnetic Fields Radial in the Solar Polar Region?  Multi-channel coronal hole detection with convolutional neural networks  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Solar Memory From Hours to Decades
Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves
Radio evidence for a shock wave reflected by a coronal hole
Hemispheric sunspot numbers 1874 - 2020
Temperature in Solar Sources of 3He-rich Solar Energetic Particles and Relation to Ion Abundances
The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 1723
Tracing Hα Fibrils through Bayesian Deep Learning
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Forecasting the Remaining Duration of an Ongoing Solar Flare
A fundamental mechanism of solar eruption initiation
Thermal Trigger for Solar Flares III: Effect of the Oblique Layer Fragmentation
Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops
Characteristic time of stellar flares on Sun-like stars
M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfvén Wave
Bayesian evidence for a nonlinear damping model for coronal loop oscillations
Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption
Validation of the PDFI_SS method for electric field inversions using a magnetic flux emergence simulation
Investigation on the Spatiotemporal Structures of Supra-Arcade Spikes
Magnetic helicity and energy budget around large confined and eruptive solar flares
One dimensional prominence threads: I. Equilibrium models

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University