E-Print Archive

There are 4618 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Phase mixed Alfvén waves in partially ionised solar plasmas View all abstracts by submitter

Max McMurdo   Submitted: 2023-11-13 10:19

Phase mixing of Alfvén waves is one of the most promising mechanisms for heating of the solar atmosphere. The damping of waves in this case requires small transversal scales, relative to the magnetic field direction. Here this requirement is achieved by considering a transversal inhomogeneity in the equilibrium plasma density profile. Using a single fluid approximation of a partially ionized chromospheric plasma we study the effectiveness of the damping of phase mixed shear Alfvén waves and investigate the effect of varying the ionization degree on the dissipation of waves. Our results show that the dissipation length of shear Alfvén waves strongly depends on the ionization degree of the plasma, but more importantly, in a partially ionized plasma, the damping length of shear Alfvén waves is several orders of magnitude shorter than in the case of a fully ionized plasma, providing evidence that phase mixing could be a large contributor to heating the solar chromosphere. The effectiveness of phase mixing is investigated for various ionization degrees, ranging from very weakly to very strongly ionized plasmas. Our results show that phase mixed propagating Alfvén waves in a partially ionized plasma with ionization degrees in the range = 0.518-0.657, corresponding to heights of 1916 -2150 km above the solar surface, can provide sufficient heating to balance chromospheric radiative losses in the quiet Sun.

Authors: M. McMurdo, I. Ballai, G. Verth, A. Alharbi, V. Fedun
Projects: None

Publication Status: Accepted
Last Modified: 2023-11-13 12:32
Go to main E-Print page  Using Potential Field Extrapolations to Explore the Origin of Type II Spicules  Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Formation and Dynamics in an Observed Preeruptive Filament
Unveiling the spectacular over 24-hour flare of star CD-36 3202
The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains
Coronal dimmings as indicators of early CME propagation direction
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
Study of Time Evolution of Thermal and Nonthermal Emission from an M-class Solar Flare
Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weather-Oriented Research
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Defining the Middle Corona
First Results for Solar Soft X-Ray Irradiance Measurements from the Third-generation Miniature X-Ray Solar Spectrometer
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
Using Potential Field Extrapolations to Explore the Origin of Type II Spicules
Phase mixed Alfvén waves in partially ionised solar plasmas
Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion
A model of failed solar eruption initiated and destructed by magnetic reconnection
Energetics of a solar flare and a coronal mass ejection generated by a hot channel eruption
An Optically Thin View of the Flaring Chromosphere: Nonthermal widths in a chromospheric condensation during an X-class solar flare
A Database of Magnetic and Thermodynamic Properties of Confined And Eruptive Solar Flares

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University