E-Print Archive

There are 4353 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
3D MHD Coronal Oscillations About a Magnetic Null Point: Application of WKB Theory View all abstracts by submitter

James McLaughlin   Submitted: 2007-12-11 09:01

This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit's Method and a Runge-Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, B = (x,εy - (ε +1)z). Under our cold plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfvén waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point, and that the effect of this refraction depends upon the Alfvén speed profile. The wave, and thus the wave energy, accumulates at the null point. We have found that current build up is exponential and the exponent is dependent upon ε. Thus, for the fast wave there is preferential heating at the null point. For the Alfvén wave, we find that the wave propagates along the fieldlines. For an Alfvén wave generated along the fan-plane, the wave accumulates along the spine. For an Alfvén wave generated across the spine, the value of ε determines where the wave accumulation will occur: fan-plane (ε=1), along the x-axis (0 < ε <1) or along the y-axis (ε > 1). We have shown analytically that currents build up exponentially, leading to preferential heating in these areas. The work described here highlights the importance of understanding the magnetic topology of the coronal magnetic field for the location of wave heating.

Authors: McLaughlin, J. A., Ferguson, J.S.L. and Hood, A. W.
Projects: None

Publication Status: Solar Physics (in press)
Last Modified: 2007-12-11 09:01
Go to main E-Print page  Magnetohydrodynamics wave propagation in the neighbourhood of a two-dimensional null point  Subject will be restored when possible  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University