E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Subject will be restored when possible View all abstracts by submitter

Ashley Crouch   Submitted: 2008-02-26 16:48

We present a model for the total solar irradiance. The model takes the observed location, timing, and area of emerging active regions as input and produces a time-evolving size distribution of magnetic structures over the solar surface. We assume that the bright magnetic structures (faculae), which counteract the irradiance deficit caused by sunspots, consist of the products of active region decay. We simulate the decay process as a combination of fragmentation and boundary erosion of large-scale magnetic structures. The model has several adjustable parameters that control the decay processes and the irradiance contribution from the quiet Sun and the small-scale magnetic elements that are produced during the decay process. We use a genetic algorithm to estimate these parameters by fitting to the observed irradiance and daily sunspot area time series over the 1978-2007 time interval. Given the simplifications associated with the model, the resultant parameter values are well constrained within the imposed ranges. In addition, the irradiance and daily sunspot area time series produced by the best-fit models agree very well with the observations, although the sunspot area fits tend to perform better than the irradiance fits. However, it is evident that the model is neglecting a significant source of excess brightness, which manifests itself in two ways. First, the optimal values for the lifetime and intensity contrast of the bright, small-scale flux elements are both larger than expected. Second, the synthetic irradiance consistently underestimates the observations during the ascending phase of a cycle, despite the daily sunspot area fitting the observations quite well during these times. We also show that this genetic forward modelling approach can be used to detect a long term trend of decadal timescale in the quiet-Sun irradiance. Assuming a constant quiet-Sun irradiance, we reconstruct the total solar irradiance over the 1874-1978 time interval, for which observational data of emerging active regions are available.

Authors: A. D. Crouch, P. Charbonneau, G. Beaubien, D. Paquin-Ricard
Projects: None

Publication Status: ApJ, in press
Last Modified: 2008-09-23 21:22
Go to main E-Print page  Subject will be restored when possible  Subject will be restored when possible  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University