E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Magnetic Helicity Budget of Solar Active Regions and Coronal Mass Ejections View all abstracts by submitter

Alexander Nindos   Submitted: 2003-05-26 07:59

We compute the magnetic helicity injected by transient photospheric horizontal flows in 6 solar active regions associated with halo coronal mass ejections (CMEs) that produced major geomagnetic storms and magnetic clouds (MCs) at 1 AU. The velocities are computed using the local correlation tracking (LCT) method. Our computations cover time intervals of 110-150 hours and in 4 active regions the accumulated helicities due to transient flows are factors of 8-12 larger than the accumulated helicities due to differential rotation. As has been first pointed out by Demoulin & Berger (2003), we suggest that the helicity computed with the LCT method yields not only the helicity injected from shearing motions but also the helicity coming from flux emergence. We compare the computed helicities injected into the corona with the helicities carried away by the CMEs using the MC helicity computations as proxies to the CME helicities. If we assume that the length of the MC flux tubes is ell=2 AU then the total helicities injected into the corona are a factor of 2.9-4 lower than the total CME helicities. If we use the values of ell determined by the condition for the initiation of the kink instability in the coronal flux rope or ell=0.5 AU then the total CME helicities and the total helicities injected into the corona are broadly consistent. Our study, at least partially, clears up some of the discrepancies in the helicity budget of active regions because the discrepancies appearing in our paper are much smaller than the ones reported in previous studies. However they point out the uncertainties in the MC/CME helicity calculations and also the limitations of the LCT method which underestimates the computed helicities.

Authors: A. Nindos, J. Zhang, H. Zhang
Projects: None

Publication Status: ApJ, in press
Last Modified: 2003-05-26 07:59
Go to main E-Print page  TRACE and YOHKOH Observations of a White Light Flare  Does solar flare activity lag behind sunspot activity?  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University