E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Sigmoids as Precursors of Solar Eruptions View all abstracts by submitter

Richard Canfield   Submitted: 2000-03-22 14:05

Coronal Mass Ejections (CMEs) appear to originate preferentially in regions of the Sun's corona that are sigmoidal, i.e. have sinuous S or reverse-S shapes. Yohkoh solar X-ray images have been studied before and after a modest number of Earth-directed (halo) CMEs. These images tend to show sigmoidal shapes before the eruptions and arcades, cusps, and transient coronal holes after. Using such structures as proxies, it has been shown that there is a relationship between sigmoidal shape and tendency to erupt. Regions in the Sun's corona appear sigmoidal because their magnetic fields are twisted. Some of this twist may originate deep inside the Sun. However, it is significantly modulated by the Coriolis force and turbulent convection as this flux buoys up through the Sun's convection zone. As the result of these phenomena, and perhaps subsequent magnetic reconnection, magnetic flux ropes form. These flux ropes manifest themselves as sigmoids in the corona. Although there are fundamental reasons to expect such flux ropes to be unstable, the physics is not as simple as might first appear, and there exist various explanations for instability. Many gaps need to be filled in before the relationship between sigmoids and CMEs is well enough understood to be a useful predictive tool.

Authors: Canfield, R. C., Hudson, H. S., and Pevtsov, A. A.
Projects: None

Publication Status: IEEE Transactions on Plasma Science, 28, 1786 (2000)
Last Modified: 2003-11-03 10:52
Go to main E-Print page  Lithium-6 from Solar Flares
  Self-organized criticality from separator reconnection in
  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University