E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The evolution of twisting coronal magnetic flux tubes View all abstracts by submitter

Bernhard Kliem   Submitted: 2003-11-06 17:14

We simulate the twisting of an initially potential coronal flux tube by photospheric vortex motions, centred at two photospheric flux concentrations, using the compressible zero-beta ideal MHD equations. A twisted flux tube is formed, surrounded by much less twisted and sheared outer flux. Under the action of continuous slow driving, the flux tube starts to evolve quasi-statically along a sequence of force-free equilibria, which rise slowly with increasing twist and possess helical shape. The flux bundle that extends from the location of peak photospheric current density (slightly displaced from the vortex centre) shows a sigmoidal shape in agreement with observations of sigmoidal soft X-ray loops. There exists a critical twist, above which no equilibrium can be found in the simulation and the flux tube ascends rapidly. Then either stable equilibrium ceases to exist or the character of the sequence changes such that neighbouring stable equilibria rise by enormous amounts for only modest additions of twist. A comparison with the scalings of the rise of flux in axisymmetric geometry by Sturrock et al. (1995) suggests the former. Both cases would be observed as an eruption. The critical end-to-end twist, for a particular set of parameters describing the initial potential field, is found to lie in the range 2.5pi < Phi_mathrm{c} < 2.75pi. There are some indications for the growth of helical perturbations at supercritical twist. Depending on the radial profiles of the photospheric flux concentration and vortex velocity, the outer part or all of the twisted flux expands from the central field line of the flux tube. This effect is particularly efficient in the dynamic phase, provided the density is modeled realistically, falling off sufficiently rapidly with height. It is expected to lead to the formation of a cavity in which the twisted flux tube is embedded, analogous to the typical structure of coronal mass ejections.

Authors: T. Toeroek and B. Kliem

Publication Status: Astron. Astrophys. 406, 1043 (2003)
Last Modified: 2003-11-21 10:28
Go to main E-Print page  Ideal kink instability of a magnetic loop equilibrium  Solar Magnetic Loops Observed with TRACE and EIT  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University