E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Future Possibilities for Doppler and Magnetic Field Measurements in the Extended Solar Atmosphere View all abstracts by submitter

G. Allen Gary   Submitted: 2008-07-08 08:44

For the first time, a vacuum ultraviolet telescope can be built to observe magnetic fields, plasma flows, and heating events in the Sun's atmosphere. These observations can provide key data for space weather models. The vacuum ultraviolet (VUV) region allows remote sensing of the upper levels of the solar atmosphere where the magnetic field dominates the physics. A VUV Fabry-Perot interferometer (FPI) will allow us to observe the magnetic field, flows, and heating events in the mid-transition region (between the chromosphere and corona). Observations of this region are needed to directly probe the magnetic structure and activity at the base of the corona where the magnetic field is approximately force-free, i.e., where gas pressures are very small. This is a key element in developing accurate models of the Sun's dynamics for space weather. The specific region of interest is the 100 km thick transition region, between the chromosphere and the much hotter corona, which strongly emits at 155 nm from triply ionized carbon (CIV) at 100,000 K. This is best observed by an imaging interferometer that combines the best attributes of a spectrograph and an imager. We present the latest results from the NASA Marshall Space Flight Center (MSFC) FPI. The major elements of thetunable CIV VUV FP interferometer are the 35mm MgF2 etalon plates with a plate finesse of F>25 at 155 nm, the pi-dielectric coatings, a Hansen mechanical mount in a pressurize canister, and the piezoelectric control system. The control system for the etalon is a capacitance-stabilized Hovemere Ltd. standard system. The special Cascade Optical Corporation reflectance coatings are 25 pi-multilayers of high-low refractive layers paired in phase. This CIV interferometer, when flown above Earth's atmosphere, will obtain narrow-passband images, magnetograms, and Dopplergrams of the transition region in the CIV 155 nm line at a rapid cadence. We recently measured the MSFC VUV FPI using the University of Toronto's fluoride excimer laser as a proxy for CIV 155 nm. The test demonstrated the first tunable interferometer with the passband required for a VUV filter magnetograph. The measured values have a full-width half-maximum (FWHM) passband of 10 pm, a free-spectral range (FSR) of 61pm, and a transmittance of 58% at 157 nm. The resulting VUV interferometer finesse is 5.9. With this success, we are developing an instrument suitable for a flight on an orbiting solar observatory. A description of the interferometer for this mission is described.

Authors: G. Allen Gary (CSPAR), John M. Davis (MSFC), and Edward A. West (MSFC)
Projects: None

Publication Status: Submitted to Journal of Advances in Space Research (Elservier 2008)
Last Modified: 2008-09-23 20:57
Go to main E-Print page  Forced oscillations of coronal loops driven by EIT waves  Helical motion of magnetic flux tubes in the solar atmosphere  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University