E-Print Archive

There are 4371 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
New views of the solar wind with the Lambert W function View all abstracts by submitter

Steven R Cranmer   Submitted: 2004-06-14 14:22

This paper presents closed-form analytic solutions to two illustrative problems in solar physics that have been considered not solvable in this way previously. Both the outflow speed and the mass loss rate of the solar wind of plasma particles ejected by the Sun are derived analytically for certain illustrative approximations. The calculated radial dependence of the flow speed applies to both Parker's isothermal solar wind equation and Bondi's equation of spherical accretion. These problems involve the solution of transcendental equations containing products of variables and their logarithms. Such equations appear in many fields of physics and are solvable by use of the Lambert W function, which is briefly described. This paper is an example of how new functions can be applied to existing problems.

Authors: Steven R. Cranmer
Projects: None

Publication Status: American J. Phys., in press (2004)
Last Modified: 2004-06-14 14:22
Go to main E-Print page  Solar Gamma-Ray Line Spectroscopy - Physics of a Flaring Star  Co- and counter-helicity interaction between two adjacent laboratory prominences   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University