E-Print Archive

There are 4371 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Dynamics of plasmoids formed by the current sheet tearing View all abstracts by submitter

Miroslav Barta   Submitted: 2008-09-30 03:01

Context: Moving blob-like features observed in the soft X-ray and EUV range above flare-loops are often interpreted as signatures of plasmoids formed by the current sheet tearing in the flare-associated reconnection process. Aims: We investigate the evolution of the flare-associated current sheet numerically in order to analyse the kinematics and dynamics of plasmoids. The goal is to explain the broad diversity of kinematical properties of the plasmoid signatures recorded by various observational techniques. Methods: We performed a 2-dimensional resistive-MHD numerical simulation of the reconnection starting from the Harris-type current sheet. After identifying the plasmoids, we followed their motion to determine basic kinematical parameters (velocity and acceleration), and we analysed the associated magnetic field topology. Results: The simulation reveals a broad variety of the kinematical/dynamical properties of plasmoids - after formation, a plasmoid can move upward, downward, or can even change its direction of propagation. The highest velocities, in the range of the ambient Alfvén speed, are found in the case of upward propagating plasmoids. The acceleration is determined by the net magnetic field tension of the reconnected field lines. Downwardly propagating plasmoids achieve only a fraction of the ambient Alfvén speed. They strongly decelerate during the coalescence with low-lying flare-loops, when distinct energy-release peaks occur and loop system oscillations are excited. Conclusions: The presented results explain, qualitatively and quantitatively, the broad spectrum of kinematical properties of various observational features attributed to the current-sheet plasmoids.

Authors: Bárta, M.; Vr?nak, B.; Karlický, M.
Projects: None

Publication Status: A&A 477, Issue 2, January II 2008, pp.649-655
Last Modified: 2008-09-30 09:31
Go to main E-Print page  Generation of highly energetic electrons at reconnection outflow shocks during solar flares  Propagation of nonadiabatic magnetoacoustic waves in a threaded prominence with mass flows  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University