E-Print Archive

There are 4353 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Modeling of Coronal EUV Loops Observed with TRACE : I. Hydrostatic Steady-State Solutions with Nonuniform Heating View all abstracts by submitter

Markus J Aschwanden   Submitted: 2000-08-18 13:05

Recent observations of coronal loops in EUV wavelengths with the {sl Transition Region and Coronal Explorer (TRACE)} and the {sl Extreme-ultraviolet Imaging Telescope (EIT)} on the {sl Solar and Heliospheric Observatory (SoHO)} demonstrated three new results that cannot be explained with most of the existing loop models: (1) EUV loops are near-isothermal along their coronal segments, (2) they show an overpressure or overdensity compared with the requirements of steady-state loops with uniform heating, and (3) the brightest EUV loops exhibit extended scale heights up to four times the hydrostatic scale height. These observations cannot be reconciled with the classical RTV (Rosner, Tucker, & Vaiana) model, they do not support models with uniform heating, and partially even violate the requirements of hydrostatic equilibrium. - In this study we conduct numeric calculations of steady-state solutions of the hydrodyn- hydrodynamic equations of mass conservation, momentum balance, and energy balance. We calculate some 500 solutions that cover a large parameter space of loop lengths (L approx 4-300 Mm), of nonuniform heating functions (with heating scale heights in the range of {lambda}_H approx 1-300 Mm), as well as the limit of uniform heating ({lambda}_H gg L). The parameter space can be subdivided into 3 regimes, which contain (1) solutions for stable loops, (2) solutions for unstable loops, and (3) no solutions. Short heating scale heights ({lambda}H, Mm lapprox sqrt{LMm}) lead to unstable loops. Fitting the hydrostatic solutions to 41 EUV loops observed with {sl TRACE} we find that 60% are dynamically unstable, 30% are near a steady-state equilibrium, and 10% are cooling off. Those loops near steady-state are all found to be heated near the footpoints, with a heating scale height of {lambda}_H=12 pm 5 Mm, covering a fraction {lambda}_H/L=0.2pm0.1 of the loop length. None of the observed loops is consistent with a uniform heating function in steady-state. Because the observed heating scale heights are all found less than a factor of 2 within the instability limit, most of the coronal heating episodes seem to operate with relatively short heating scale heights, producing mostly dynamical- dynamically unstable loops and transient brightenings.

Authors: Markus J. Aschwanden, Carolus J. Schrijver, and David Alexander
Projects:

Publication Status: ApJ, subm. (2000 Aug 7)
Last Modified: 2000-08-18 13:05
Go to main E-Print page  The Origin and Development of the May 1997 Magnetic Cloud  Evolution and decay of an active region: Magnetic shear, flare and CME activity
  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University