E-Print Archive

There are 4371 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Observational Analysis of Magnetic Reconnection Sequence View all abstracts by submitter

Jiong Qiu   Submitted: 2008-10-27 11:25

We conduct comprehensive analysis of an X2.0 flare to derive quantities indicative of magnetic reconnection in solar corona by following temporally and spatially resolved flare ribbon evolution in the lower atmosphere. The analysis reveals a macroscopically distinctive two-stage reconnection (Moore et al. 2001) marked by a clear division in morphological evolution, reconnection rate, and energy release rate. During the first stage, the flare brightening starts at and primarily spreads along the polarity inverion line (PIL) with the maximum apparent speed comparable to the local Alfvén speed. The second stage is dominated by ribbon expansion perpendicular to the PIL at a fraction of the local Alfvén speed. We further develop a data analysis approach, namely ''reconnection sequence analysis'', to determine the connectivity and reconnection flux during the flare between a dozen magnetic sources defined from partitioning the photospheric magnetogram. It is found that magnetic reconnection proceeds sequentially between magnetic cells, and the observationally measured reconnection flux in major cells compares favorably with computations by a topological model of magnetic reconnection. The 3D evolution of magnetic reconnection is discussed with respect to its implication on helicity transfer and energy release through reconnection.

Authors: Jiong Qiu
Projects: None

Publication Status: ApJ, 692, 1110
Last Modified: 2009-02-24 18:55
Go to main E-Print page  Three Dimensional Structure and Energy Balance of a Coronal Mass Ejection  Global shallow water magnetohydrodynamic waves in the solar tachocline  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University