E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Modeling Solar Flare Hard X-ray Images and Spectra Observed with RHESSI View all abstracts by submitter

Linhui Sui   Submitted: 2005-02-02 11:48

Observations obtained with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) of a flare on February 20, 2002 indicate a hard X-ray (HXR) coronal source at or near the top of a flare loop (called a HXR looptop source). The existence of the HXR looptop source suggests that magnetic reconnection, which is believed to power flares, occurs above the loop. In order to explain this HXR looptop source, I created a steady-state particle transport model, in which high-energy electrons are continuously injected at the top of a semicircular flare loop. Based on the simulation results, I find that the model predictions are consistent with the RHESSI observations in many respects, but the spectrum of the looptop source obtained from the model is steeper than that from the RHESSI data. This suggests that, instead of being accelerated above the loop as generally believed, the particles might be accelerated in the looptop itself. RHESSI observations of three other homologous flares that occurred between April 14 and 16, 2002, provide strong evidence for the presence of a large-scale current sheet above a flare loop, which is the basis of standard flare models. The most convincing finding is the presence of the temperature distribution of a separate coronal source above the flare loops: the hotter part of the coronal source was located lower in altitude than the cooler part. Together with the fact that the hotter flare loops are higher than the cooler loops, the observations support the existence of a large-scale current sheet between the top of the flare loops and the coronal source above. Blob-like sources along a line above the loop in the decay phase of the April 15, 2002, flare, which are suggestive of magnetic islands initiated by the tearing-mode instability, and the observation of a cusp structure in microwaves, further support the presence of the current sheet. The observations of the three homologous flares reveal two other features which are beyond the predictions of the standard flare models: the downward motion of flare loops in the early impulsive phase of each flare, and an initially stationary coronal source above the loops. These features are believed to be related to the formation and development of a current sheet. In particular, the downward loop motion seems to be a common phenomenon in flares, suggesting the necessity for modifications to the existing standard flare models. Finally, thanks to the broad energy coverage of the RHESSI spectra, a low-energy cutoff of 28~(pm2)~keV in the nonthermal electron distribution was determined for the April 15, 2002, flare. As a result, the energy carried by the nonthermal electrons is found to be comparable to the thermal energy of the flare, but one order of magnitude larger than the kinetic energy of the associated coronal mass ejection. The method used to deduce the electron low-energy cutoff will be useful in the analyses of similar events.

Authors: Linhui Sui
Projects: RHESSI

Publication Status: Doctoral Dissertation (Catholic University of America), 2005, NASA Technical Memorandum (2005-212776)
Last Modified: 2005-02-02 11:48
Go to main E-Print page  Energetics of Coronal Mass Ejections  Noise storm continua: power estimates for electron acceleration  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University