
SYNTHETICALLY OBSERVING EBTEL MODELED SOLAR FLARES BY BROCK PARKER

OVERVIEW

BACKGROUND

Solar flares, SDO, EBTEL

PREVIOUS WORK

Magnetic Extrapolation, UFC, Two-phase Heating

01

CURRENT WORK

Python SynthesizAR, Importing loops

FUTURE

Importing Results, Modifications

BACKGROUND

0

 \mathbf{O}

SOLAR FLARES

Intense eruption of electromagnetic radiation from the sun's atmosphere.

Image Credit: SOO AIA

SDO – Solar Dynamics Observatory

Magnetic Field in the Photosphere

Upper Photosphere and Transition Region, 10,000 K

Transition Region and Chromosphere, 50,000 K

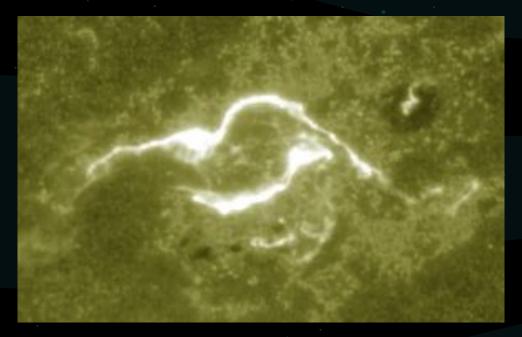
Upper Transition Region and Corona, 600,000 K 193 Å

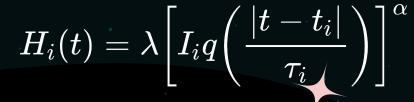
Corona, 1,000,000 K

Flaring Regions, 10,000,000 K

Image Credit: https://www.nasa.gov/mission_pages/sdo/how-sdo-sees-the-sun

EBTEL – Enthalpy Based Time Evolution of Loops $rac{dar{P}}{dt}pproxrac{2}{3}\left[ar{Q}-rac{1}{L}(R_c+R_{tr})-rac{F}{L}igg(1-rac{3}{2}rac{kT}{arepsilon}igg)
ight]$ $d\bar{n}$ $=-rac{c_2}{5c_3kLar{T}}(F_0+R_{tr})+rac{F}{arepsilon L}igg(1-rac{c_2}{5c_3}rac{arepsilon}{kar{T}}igg)$ dt


EQUILIBRIUM


Energy balance between coronal heating and losses by radiation and thermal conduction.

ENTHAPLY

Equate enthalpy flux of plasma with change in heat flux relative to radiation loss rate in the transition region.

(Klimchuk et al., 2008)

UFC

UV Footprint Calorimeter Method. The brightness of loop feet is proportional to the heating of the loops.

(Qiu et al., 2012)

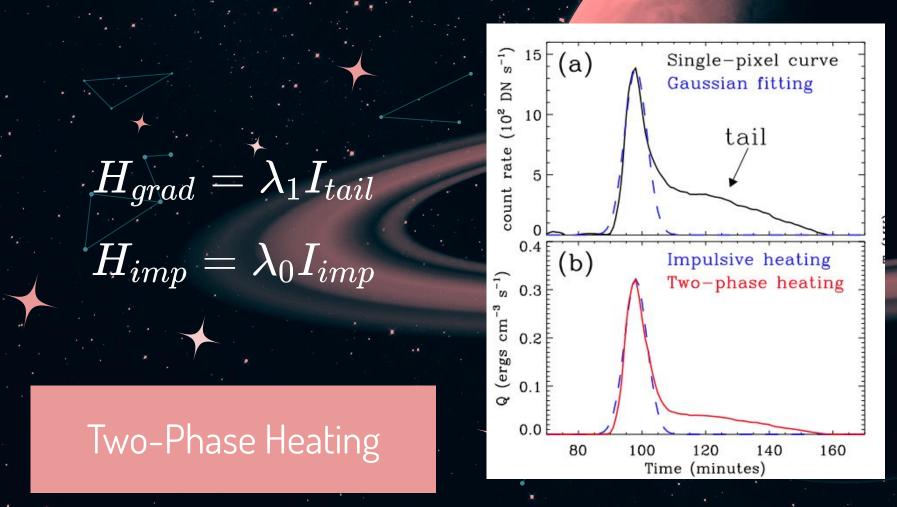
PREVIOUS WORK

0

02

PROCESS

LIGHTCURVES


Flare lightcurves for each different SDO EUV wavelength.

PIXELS

Identification of flaring pixels in the 1600 flaring ribbons.

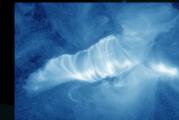
EBTEL

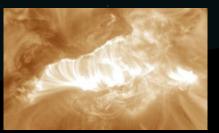
Run 0D simulations of the loops and generate synthetic lightcurves.

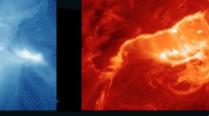
(Qiu & Longcope, 2016, Zhu et al., 2018)

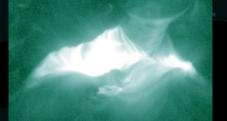
Magnetic Extrapolation

Simulating magnetic field loops from HMI data.

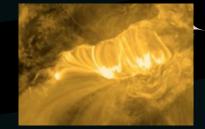

CURRENT WORK


0

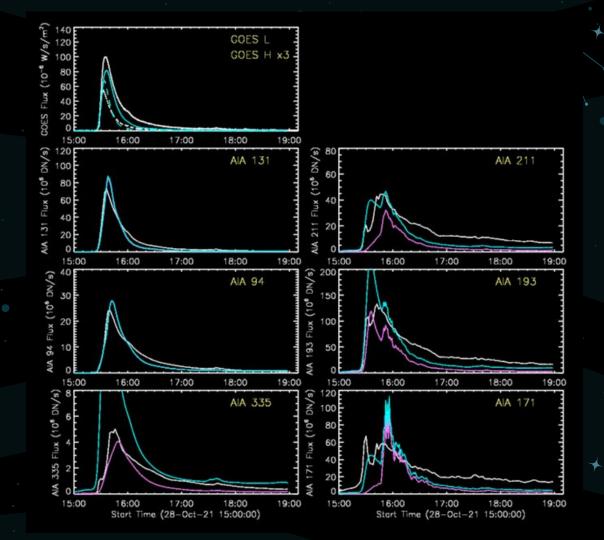

03



•






OUR FLARE 20211028 X1.0

LIGHT CURVES

Light curves of the entire flaring region from observational data compared with synthetic.

SynthesizAR

1000

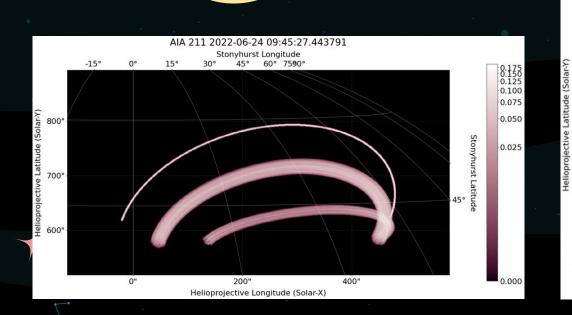
500"

0"

-500"

-1000"

-1000"

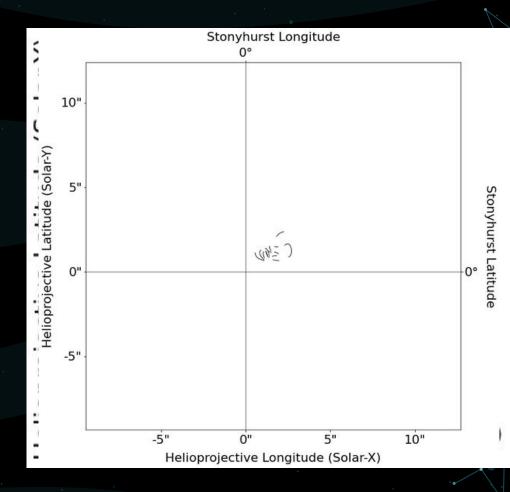

-500"

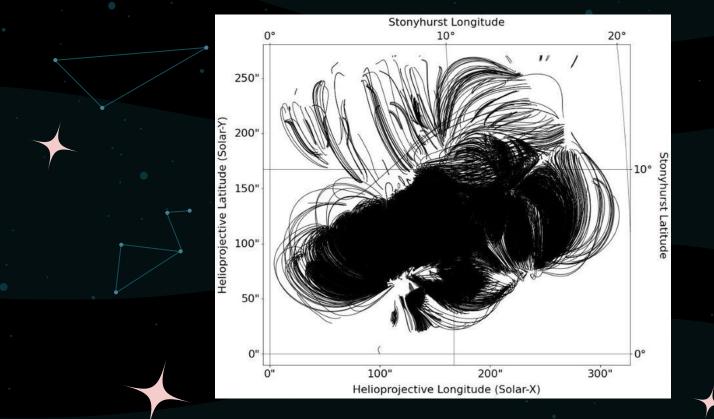
500"

0"

Helioprojective Longitude (Solar-X)

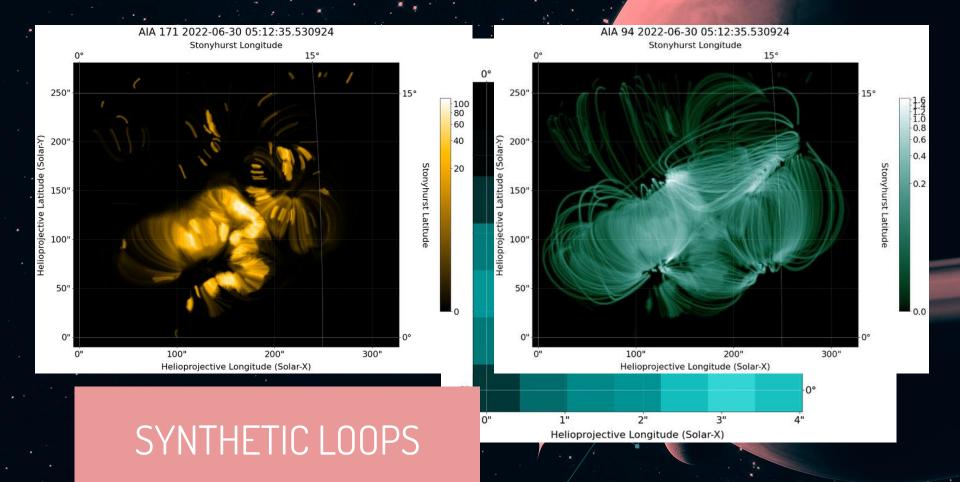
1000"


(Barnes et al., 2019)


RANDOM LOOPS

Modification to Python standards plus adaptation to arbitrary numbers of loops.

IMPORTING LOOPS


Modifying loop coordinates to be processed by SynthesizAR.

IMPORTING LOOPS

Modifying loop coordinates to be processed by SynthesizAR.

FUTURE WORK

0

 $\mathbf{04}$

NEXT STEPS

COORDINATES

Accurately import loop coordinates in Stonyhurst frame.

EBTEL

Read in EBTEL results for each loop.

COMPARE

Compare synthetic images to actual data.

as u ort readsav

IDLInterface']

/Interface(object):

terface to pregenerated IDL E

Parameters

loop : `~synthesizAR.Skeleton`
 Skeleton object containing a
file : '~string'
File location of the EBTEL
"""
name = 'IDL'

def __init__(self, file):
 self._file = file

f load_results(self, loop):
 print('Successfully loaded t
 print(loop)
 orint('Loading file: ' + stn
 tel_data = readsav(self._1

ebtel_data['nntime']' ebtel_data['densi htel_data['v0']' 'nl_data['t0

TIME

Iterate synthetic observations over actual time evolution.

BIBLIOGRAPHICAL REFERENCES

• J. A. Klimchuk, et al. 2008, ApJ, 682, 1351. Highly Efficient Modeling of Dynamic Coronal Loops

• Jiong Qiu, et al. 2012, ApJ, 752, 124. Heating of Flare Loops with Observationally Constrained Heating Functions (UFC or UV Footprint Calorimeter Method)

• Jiong Qiu and Longcope, Dana 2016, *ApJ*, 820, 14.

Long Duration Flare Emission: Impulsive Heating or Gradual Heating?

• Chunming Zhu, et al. 2018, ApJ, 856, 27. Two-Phase Heating in Flaring Loops

• W. T. Barnes, et al. 2019, ApJ, 880, 56. Understanding Heating in Active Region Cores through Machine Learning. I. Numerical Modeling and Predicted Observables

THANKS!

Do you have any questions?

bparke13@uwyo.edu https://solar.physics.montana.edu/home/w ww/reu/2022/bparker/index.html

Advisor: Dr. Chunming Zhu

CREDITS:

This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**