The Starburst-AGN Connection: Integral Field Spectroscopy of Merging and Seyfert 2 Galaxies

Sarah A. Jaeggli Robert D. Joseph, project mentor

Activity in Galaxies

In the course of their evolution, galactic nuclei occasionally light up

Energy from a galactic nucleus may come from two sources

- Accretion of matter onto a massive compact object (Active Galactic Nuclei or AGN)
- The sudden onset of star formation, a Starburst

Both occur within a large amount of dust

A Starburst/AGN Connection?

- Conservation of angular momentum makes it difficult to feed an AGN directly (Gunn 1977)
- A little accreted mass turns into a large amount of spectral energy
- Nuclear starbursts may be the answer
 - Supernovae and outflows from giants and super giants may provide the necessary material

Project Goals

- Using integral field spectroscopy in the infrared determine the presence of a nuclear Starburst/AGN
- Estimate the strength of a possible Starburst based on infrared spectral diagnostics and stellar synthesis models
- Look for connections between the possible Starburst and AGN

Observations

- Observations of 20 merging and/or Seyfert 2 galaxies taken by R. Joseph on April 19-23, 2003
 - I5 have the S/N needed for these measurements
 - 4 of these 15 are presented
- UK Infrared Telescope Imager-Spectrometer (UIST) integral field unit
 - **–** I.4 2.4 μm
 - $6 \times 3.3 \operatorname{arcsec}^2$
 - **–** R~900

H & K-band Spectral Diagnostics

Diagnostic	Physics
[Fe II]	Produced in supernova remnants, lasts for 10 ⁴ years
Paschen α , Brackett γ	O & B main sequence stars, broad and narrow line regions of AGN
[Si VI]	Very high ionization potential(~200eV), only produced in AGN
H ₂ (I-0)	Shocked neutral medium, AGN, SN, mergers
Hel	Windy O & B main sequence stars
CO (2-0) band	Red giant stars

IC 3639

Type: SBbc
Nuclear Activity: Seyfert 2
Distance: 49.6 Mpc
2 companion galaxies

DSSI 4680A 6 arcmin

HST 6030A 0.6 arcmin

IC 3639

MRK 477

Type: Compact

Nuclear Activity: Seyfert 2

Distance: 158.1 Mpc

Interacting with companion galaxy

MRK 477

6

5

Δ

IRTF H-band I.3 arcmin

MRK 477

NGC 2623

Type: Peculiar Nuclear Activity: Seyfert 2 Distance: 75.9 Mpc

Merger

NGC 2623

 \diamond

6

5

4

3

arcsec

Palomar 5m 4050A 2.8x2.2 arcmin

NGC 2623

NGC 2623 H-band 200 $F_{\lambda} [10^{-18} \text{ W/m}^2/\mu\text{m}]$ [Fe II] Supernovae 50 100 50 1.65 1.60 1.55 1.70 1.75 Wavelength [μ m] sky emission NGC 2623 K-band 200 $F_{\lambda} [10^{-18} \text{ W/m}^2/\mu\text{m}]$ $Br \ \gamma \quad O \ \& \ B \ stars$ He l 50 100 H₂ I-0 S(I) 50 CO (2-0) **Red Giants** 1.9 2.0 2.1 2.2 2.3 2.4 Wavelength $[\mu m]$

Type: SAB peculiar Nuclear Acticity: Seyfert I.5 Distance: 18.3 Mpc Possible companion, within a group of 13 galaxies

Palomar 200in 4050A ~9 arcmin

NGC 3227

Starburst Stellar Synthesis

Starburst99

Predictions of the spectral properties of a stellar population based on age

-Continuous and instantaneous star formation -Initial mass function:

-Salpeter (-2.35, 1-100 Msun)

-Steeper power law (-3.3, I-100 M_{sun})

-Lower mass cutoff (-2.35, I-30 M_{sun})

Using Starburst99

• Assuming:

- The starburst is the major source of the luminosity from the nucleus
- Star formation is continuous and ongoing
- Procedure:
 - Use Br γ to find the starburst age
 - Use [Fe II] luminosity to estimate the supernova rate
 - Use the SNR and the model to find the star formation rate
 - Find Starburst99 M_κ and compare with measured M_κ

Age from the Equivalent Width of Brackett γ

Galaxy	log(W(Brγ)[Å])	Age[Myr]
IC 3639	1.07 ± 0.02	24 ± 2
MRK 477	1.20 ± 0.05	14 ± 3
NGC 2623	0.99 ± 0.02	36 ± 4
NGC 3227	0.68 ± 0.05	270 ± 10

Scaling from the Supernova rate

Galaxy	Measured SNR[yr ⁻¹]	SFR[yr⁻']
IC 3639	0.045 ± 0.004	3.45 ± 0.40
MRK 477	1.03 ± 0.08	159 ± 5.0
NGC 2623	0.080 ± 0.03	4.36 ± 1.5
NGC 3227	0.014 ± 0.002	0.75 ± 0.11

Comparison through M_K

Galaxy	$\text{measured}\ \textbf{M} \kappa$	predicted $M\kappa$	% K-band flux
IC 3639	-22.7 ± 0.2	-21.2 ± 0.1	30%
MRK 477	-24.8 ± 0.2	-25.0 ± 0.1	120%
NGC 2623	-23.9 ± 0.2	-21.7 ± 0.4	10%
NGC 3227	-21.6 ± 0.2	-20.5 ± 0.2	40%

Conclusions

- Three galaxies have a confirmed Seyfert nucleus (IC 3639, MRK 477, NGC 3227)
- Consistent starburst models are found for IC 3639, NGC 2623, and NGC 3227
- Observations with the IFU confirm previous results from long slit spectroscopy that the IMF is bottom-heavy

 Characterize the continuum emission from other sources: AGN, old stellar population

NGC 2623

• Use an iterative method to determine the relative contributions

- Mass estimation from velocity
- Statistics with 11 more galaxies

MRK 477