Molecule Formation and Magnetic Field Evolution in Sunspots

Sarah Jaeggli Haosheng Lin & Han Uitenbroek

How do sunspots maintain horizontal stability?

How do sunspots maintain horizontal stability?

 $\frac{1}{8\pi}(B_z^2(r) + F_c(r)) = nk(T_p - T_s(r))$

where $F_c(r) = 2 \int_r^a B_z(r') \frac{\partial B_r(r')}{\partial z} dr'$

How do sunspots maintain horizontal stability?

 $\frac{1}{8\pi}(B_z^2(r) + F_c(r)) = nk(T_p - T_s(r))$

where $F_c(r) = 2 \int_r^a B_z(r') \frac{\partial B_r(r')}{\partial z} dr'$

but in the umbra B is mostly vertical

$$\frac{1}{8\pi}(B_z^2(r) + F_c(r)) = nk(T_p - T_s(r))$$

How do sunspots maintain horizontal stability?

 $\frac{1}{8\pi}(B_z^2(r) + F_c(r)) = nk(T_p - T_s(r))$

where $F_c(r) = 2 \int_r^a B_z(r') \frac{\partial B_r(r')}{\partial z} dr'$

but in the umbra B is mostly vertical

$$\frac{1}{8\pi}(B_z^2(r) + F_c(r)) = nk(T_p - T_s(r))$$

so $B^2 \propto T_s$

Previous Investigations

Martinez Pillet & Vazquez (1993)

Fe I g=2.5 6302 Å: Gurman & House 1981 Balthasar & Schmidt 1993 Lites et al. 1993 Martinez Pillet & Vazquez 1993 Stanchfield et al. 1997 Westendorp Plaza et al. 2001

Fe I g=3 156548 Å: Kopp & Rabin 1992 Solanki et al. 1993 Livingston 2002 Penn et al. 2002, 2003a Mathew et al. 2004

Ti l g=2.5 22310 Å: Penn et al. 2003b

Kopp & Rabin (1992)

Umbral Mystery

Umbral Mystery

What is going on?

OH is a clue

In a realistic atmosphere we cannot assume the number density is equal to the photospheric value or a constant

$$\frac{1}{8\pi}(B_z^2(r) + F_c(r)) = n_p k T_p - n_s(r) k T_s(r)$$

Umbral Mystery

What is going on?

OH is a clue

In a realistic atmosphere we cannot assume the number density is equal to the photospheric value or a constant

$$\frac{1}{8\pi}(B_z^2(r) + F_c(r)) = n_p k T_p - n_s(r) k T_s(r)$$

B increases

B increases

then T decreases

B increases

then T decreases

then the H₂ fraction increases and n and P decrease

B increases

then T decreases

then the H₂ fraction increases and n and P decrease

region compresses

B increases

then T decreases

then the H₂ fraction increases and n and P decrease

region compresses

*Formation of a large molecular fraction has widespread implications

The Problem with H_2

We cannot observe it!

- Ro-V lines are too weak to measure in the photosphere
- Florescent transitions exist in the UV, but:
 - Samples chromospheric H₂
 - 120-160 nm, need SUMER

OH a reasonable proxy?

- Similar dissociation energies (H₂ 4.48 eV, OH 4.39 eV)
- Conveniently located near Fe I g=3 15648 Å line
- Some uncertainty, competes with CO formation

Try a Model

Solve for abundances/generate spectra for a solar atmosphere in radiative equilibrium using:

(Non)LTE Rybicki-Hummer radiative transfer and chemical equilibrium code by Han Uitenbroek

Atmospheric Models: Kurucz 7000-4000 K ΔT=250 K Phoenix* 3900-2600 K ΔT=100 K

Active Region Survey

Establish magnetic field configuration and OH abundance:

I. Random sunspots at different developmental stages

2. Emergence and evolution of a single sunspot

A Selection of FIRS and HSG Data

Region	Observation Date	Max. Field Strength [Gauss]
NOAA 10743	2005-03-12	3200
NOAA 11035 L	2009-12-17	3200
NOAA 11035 F	2009-12-17	3000
NOAA 10953	2007-04-30	2900
NOAA 9429	2001-04-18	2900
NOAA 10999	2008-06-17	2900
NOAA 10742	2005-03-12	2600
NOAA 11024	2009-07-06	2700
NOAA 11035 F	2009-12-16	2800
NOAA 11072	2010-05-21	2700
NOAA 11072	2010-05-23	2600
NOAA 11049	2010-02-17	2600
unnamed pores	2005-03-10	2500
NOAA 11046	2010-02-12	2400

What's FIRS?

Facility InfraRed Spectropolarimeter

Telescope: DST @ NSO/Sacramento Peak

Features: Diffraction limited with AO Dual beam 4-slits for high cadence (20 min.) High and low resolution modes

Wavelengths:

Simultaneous Fe I 6302/15650 Å or Fe I 6302/He I 10830 Å Runs concurrently with: IBIS Ca II 8542 Å, G-band camera

Now available for general use! For more information see: <u>http:/kopiko.ifa.hawaii.edu/firs</u>

Discussion

- Discernible changes in equilibrium state of darkest umbral points
 - In observed spots up to few% possible H₂ content
 - Maybe up to 10% in very cool spots
- Implications
 - Concentration of magnetic field during sunspot formation
 - Molecules are energy sources and sinks
 - More degrees of freedom which do not contribute to the thermal signature
 - May play a role in the sunspot irradiance problem
 - For sunspot models:
 - Use multi-component gas
 - Correct equation of state, accounting of energy
 - Inclusion of magnetic field and horizontal force balance

Thank You!

And thanks to the NSO/SP for putting me up/putting up with me for the last 4 months!