OUTLINE

LAST TIME: (CH. 51)

COMPLEX NUMBERS

MAGNITUDE

COMPLEX CONJUGATE

EVLER'S FORMULA

THIS TIME: (CH. 7)

ALTERNATING CURRENT -SINE & COSINE, W, f, T

-POWER

- PHASE SHIFT

- COMPLEX REPRESENTATION (PHASORS)

NEXT TIME: (CH. 8)

-CAPACITORS

-INDUCTORS

- COMPLEX IMPEDANCE

Before we get started on today's topic, Faissler provides the following trig identities (p. 59):

$$\sin^2 a + \cos^2 a = 1 \tag{7-15}$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b \tag{7-16}$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b \tag{7-17}$$

$$\sin 2a = 2\sin a\cos a \tag{7-18}$$

$$\cos 2a = 2\cos^2 a - 1 = 1 - 2\sin^2 a \tag{7-19}$$

Faissler has some \pm operators in his trig identities. These are not necessary if you consider a & b to be signed quantities. For example, (7-17) implies that

$$\cos(a-b) = \cos a \cos b + \sin a \sin b.$$

You will derive (7-16) and (7-17) for homework. Let's derive (7-18) and (7-19) as an example. Using Euler's formula,

$$e^{2ja} = \cos 2a + j\sin 2a.$$

Alternatively, we could write

$$e^{2ja} = (e^{ja})^2 = (\cos a + j\sin a)^2 = \cos^2 a - \sin^2 a + 2j\cos a\sin a.$$

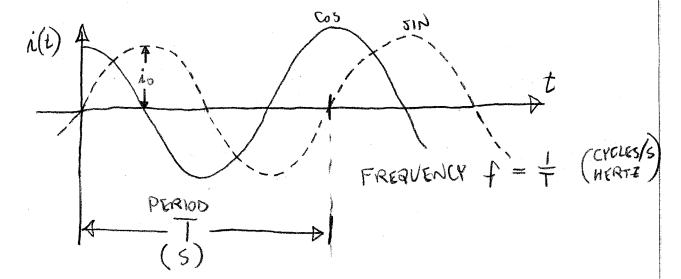
Either way we go about expressing e^{2ja} , we get a complex result of course. The only way for the two results to match is if both the real *and* the imaginary parts match. That's how we get to (7-18) and (7-19). The later requires also employing (7-15), so that we can have our result in terms of just the cosine, or just the sine.

SO FAR, WE HAVE BEEN DEALING WITH DIRECT CURRENT (DC):

V = CONSTANT SV = 3 mA

i = CONSTANT

Now consider "ALTERNATING CURRENT" (AC). EXAMPLES: $i(t) = i_0 \cos(\omega t)$ or $i(t) = i_0 \sin(\omega t)$



THE QUANTITY W (RADIANS/SEC) IS CALLED THE "ANGULAR FREQUENCY". IT IS RELATED TO TRY
AS FOLLOWS:

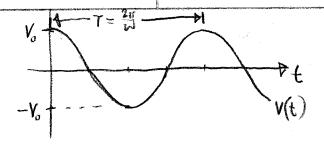
$$\omega T = 2\pi$$

$$\Rightarrow T = 2\pi$$

$$\Rightarrow f = \frac{\omega}{2\pi} + \frac{\omega}{4 + 2\pi}, H_z$$

WE MAT SIMILARLY HAVE $V(t) = V_0 \cos(\omega t).$ THIS IS STILL CALLED AC (ALTERNATING CURRENT), EVEN
THOUGH IT IS VOLTAGE!

$$V = V_0 \cos(\omega t)$$



WHAT IS THE POWER DISSIPATED

IN THE RESISTOR?

RECALL

$$P = iV$$

$$P = iV; \qquad i = \frac{V}{R} = \frac{V_0}{R} \cos(\omega t)$$

$$i = \frac{1}{R} = \frac{1}{R} \cos(\omega t)$$

$$P = \frac{V_0^1}{R} \cos(\omega t)$$

$$P = \frac{V_0^1}{R} \cos(\omega t)$$

$$P = \frac{V_0^1}{R} \cos(\omega t)$$

$$= \frac{V_0^2}{R} \frac{1}{2} \left(1 + \cos(2\omega t) \right)$$

WHAT IS THE TIME AVERAGE OF THE PUWER?

$$\overline{P} = \frac{1}{T} \int_{0}^{T} P dt = \frac{1}{T} \int_{0}^{T} \frac{V_{0}^{2}}{2\pi} \left(1 + \cos(2\omega t)\right) dt$$

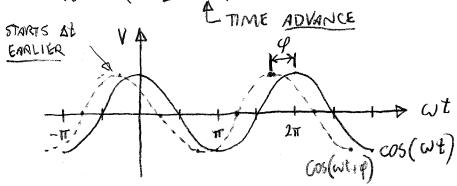
$$\text{LET } \omega t = \theta, \ dt = \frac{d\theta}{\omega}$$

$$\overline{P} = \frac{1}{T} \int_{0}^{2\pi} \frac{V_{o}^{2}}{2R\omega} \left(1 + \cos 2\theta\right) d\theta = \frac{V_{o}}{2R\omega T} \left(\theta + \frac{1}{2}\sin 2\theta\right)_{o}^{2\pi}$$

$$= \frac{V_0^2}{2R\omega(\frac{2\pi}{\omega})} 2\pi = \left(\frac{1}{2}\frac{V_0^2}{R}\right) \frac{1}{RESULT ABOVE} \frac{1}{RESULT ABOVE} \frac{1}{RESULT ABOVE}$$

PHASE SHIFT (RADIANS

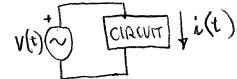
=
$$V_0 \cos(\omega[t+\Delta t])$$
; so $\omega \Delta t = \varphi$



WHAT HAPPER'S IF VOLTAGE & CURRENT ARE OUT OF PHOSE"?

1. E.
$$V = V_0 \cos(\omega t)$$
 DIFFERENT PHOSE!
 $\dot{\lambda} = \dot{\kappa}_0 \cos(\omega t + \varphi)$

FOR EXAMPLE, $\varphi = \frac{\pi}{2}$:





P>O: CIRCUIT IS DISSIPATING POWER

P<0: CIRCUIT IS A POWER GOURCE (SENDING POWER BACKINTO THE VOLTAGE SOURCE)

Q: FOR \$ = 1 WHAT IS P?

A: P=O. THERE IS NO AVERRIGE POWER, BECAUSE THE POSITIVE PEAKS AND NEGATIVE VALLEYS EXACTLY CONCEL.

$$\rho = i v = i \sqrt{\cos \omega t} \cos \varphi - \sin \omega t \sin \varphi) \cos \omega t$$

$$= i \sqrt{\cos^2 \omega t} \cos \varphi - \sin \omega t \cos \varphi + \sin \varphi$$

$$= i \sqrt{(1 + \cos 2\omega t)} + i \sqrt{\sin 2\omega t} \sin \varphi$$

$$=\frac{i_0V_0}{\sqrt{2}}\left[\cos\varphi+\cos(2\omega t_0\varphi)\right]$$

AMPLITUDE MER

MEAN

TIME VARIOTION WITH MEAN OF ZERO

SIMILARLY, IF

$$i = 1005$$
 ($\omega t + \varphi_1$), AND
 $V = V_0 \cos(\omega t + \varphi_2)$, THEN

$$P = iV = \frac{i \sqrt{2}}{2} \left[\cos(\theta_2 - \theta_1) + \cos(2\omega t + \theta_1 + \theta_2) \right]$$

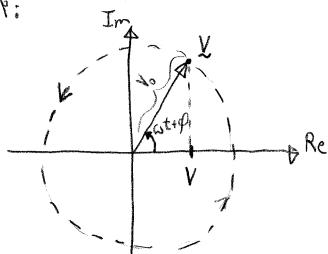
$$\frac{50}{P} = \frac{i_0 V_0}{2} \cos(4k - q_1)$$

USING COMPLEX NUMBERS TO REPORTSENT AC:

THE COMPLEX AMPLITUDE ENCODES THE PHASE SHIFT, AS WELL AS THE AMPLITUDE.

PHASE SHIFT

GRAPHICALLY:



THE "PHASOR" (ARROW) HOLDS CONSTANT RADIUS VO AS IT ROTATES COUNTER CLOCKWISE.

RECALL THAT IN OUR STUDY OF POWER, WE FOUND

IF
$$i = i_0 \cos(\omega t + q_0)$$
, $V = V_0 \cos(\omega t + q_0)$, Then
$$\overline{P} = \frac{1}{2} i_0 V_0 \cos(q_2 - q_1) = \frac{1}{2} i_0 V_0 \cos(q_1 - q_0) + This is like A$$

DOT PRODUCT,

CONSIDER: 2.2 = | 212 = 2 % BY ANALOGY, TRY $P = \frac{1}{2} \vec{\lambda} \cdot \vec{\nabla}'' = \frac{1}{2} \vec{\lambda} \cdot \vec{\nabla}' = \frac{1}{2} \vec{\lambda} \cdot \vec{e}^{-j(\omega t + \theta_1)} v_e e^{j(\omega t + \theta_2)}$ = \frac{1}{2} i.o. e \frac{1}{4} - \frac{1}{4}.

Q: 15 THIS RIGHT?

TO SEE WOW PHIS "DOT" PRODUCT WORKS CONSIDER THE ORDINARY DOT PRODUCT:

IN THE COMPLEX PLANE,

$$(\alpha + jb) \cdot (c + jd) \equiv \text{Re} [(\alpha + jb)^* (c + jd)]$$

=
$$Re[(n-jb)(c+jd)] =$$

$$= Re \left[ac + bd + j(ad - bc) \right]$$

INTERESTINGLY, THE INNGINARY PLECE
15 THE CROSS PRODUCT!