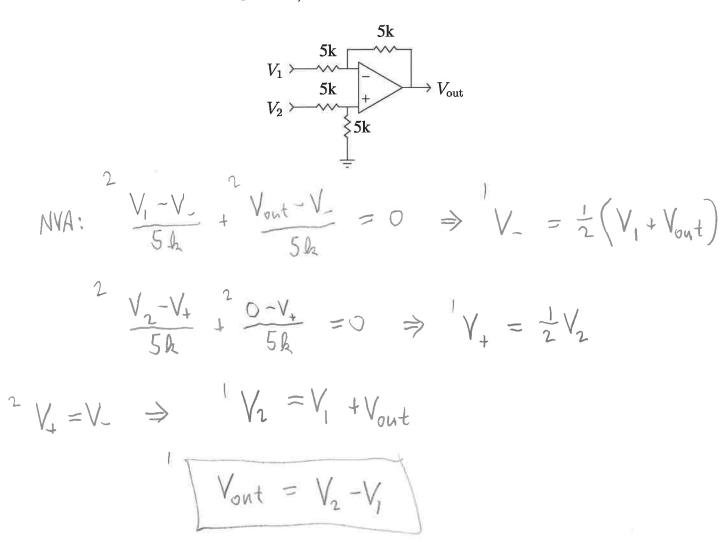

Physics 261 Exam 2

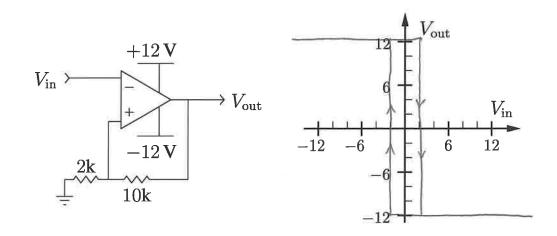
70 points possible.

Remember to show your work.

Name: Solution

- 1. (18 points) For each schematic, complete the sketch of the diode. You may assume $V_T=0.6\,\mathrm{V}$. Label the following items:
- \mathfrak{I}^{+} (a) Type **P** and **N** semiconductors, and the **junction** between them.
- L+1 (b) A few **charge carriers** in each region, indicated by \ominus or \oplus as appropriate.
- 142 (c) Indicate with arrows the direction that the charge carriers would move (or the direction the supply voltage would attempt to move them, if the diode is "off").
- | + | (d) The depletion region (if applicable).
- |+| (e) Write the **potential** at the labeled terminal $(-\circ)$.




- 2. (18 points) A bipolar junction transistor can be used as a crude substitute for a transimpedance amplifier (current to voltage converter).¹
 - 3 (a) Label the base, collector, and emitter (b, c, e).
 - (b) Is the transistor PNP or NPN?
 - ζ (c) Find V_{out} as a function of i_{in} .
 - 4(d) What is the maximum possible value of the collector current?

Vout =
$$10V$$
 in saturation
 $10V/10L\Omega = ImA$ Max current
 2 (e) $V_{out} = 10V = 10^{7}\Omega$ in \Rightarrow in $= 10^{-6}A$
 \Rightarrow Saturate for $v_{in} > 1$ mA

¹The input current source could be a photodiode, for example.

3. (14 points) Assuming an ideal op amp, find the transfer function (V_{out} as a function of V_1 and V_2).

- 4. (20 points) Analyze this Schmitt trigger.
- β (a) Express V_+ in terms of V_{out} .
- (+) Suppose $V_{+} > V_{-}$. What is V_{out} ? What range of V_{in} is possible?
 - 6 (c) Suppose $V_+ < V_-$. What is $V_{\rm out}$? What range of $V_{\rm in}$ is possible?
 - 니 (d) Carefully sketch the hysteresis curve on the given axes.

(a)
$$V_{+} = \frac{2h\pi}{2h\Omega + 10h\Omega} \quad V_{out}^{2} = \frac{V_{out}}{6} \quad (V_{o} + tage divider)$$

(b) $V_{+} > V_{-} \Rightarrow V_{out} = + 12V$

$$\Rightarrow V_{+} = 2V^{2} \quad (V_{in} = V_{-})$$

$$\Rightarrow V_{+} = 2V^{2} \qquad (V_{in} = V_{-})$$

$$V_{in} < 2V \qquad 2$$

$$V_{-} \Rightarrow V_{-} = -12V \qquad 2$$

$$V_{in} > -2V \qquad V_{-} > 2V \qquad 2$$