Physics 423, Spring 2019 Homework Set \# 1

1. The following exercises are not required, but you may find them helpful if your are rusty with vectors (Read §1.1)
(a) Find the angle between any two body diagonals of a cube.
(b) Figure 1.12 in Griffiths illustrates geometrically that

$$
A \cdot(B \times C)=B \cdot(C \times A)
$$

Verify this relation explicitly using component form.
(c) Griffiths defines the "separation vector" as $\boldsymbol{z}=\boldsymbol{r}-\boldsymbol{r}^{\prime}$, where the "field point" \boldsymbol{r} and the "source point" \boldsymbol{r}^{\prime} are position vectors. If the source point is $[1,6,4]$ and the field point is $[2,4,2]$, find the separation vector \imath, its magnitude $|\boldsymbol{\imath}|$, and the unit vector $\hat{\imath}$.
2. Due Friday, Jan 11 (Read §1.2):
(a) Griffiths problem 1.13
(b) Griffiths problem 1.16
(c) Find the curl of $\left(\hat{\boldsymbol{z}} \times \frac{\hat{\boldsymbol{r}}}{r}\right)$.
3. Due Monday, Jan 14:
(a) Calculate the Laplacian of $A+B x+C y+D x y+E\left(x^{2}-y^{2}\right)$, where the capital letters are all constants.
(b) Show that the curl of a gradient is always zero, $\nabla \times \nabla \mathbf{B}=0$. You might suppose it is zero for the same reason that $\boldsymbol{A} \times \boldsymbol{A}=0$, but it's not that simple.
(c) Show that the divergence of a curl is always zero.

