Physics 423, Spring 2019 Homework Set \# 2

1. Due Wednesday, Jan 16 (Read §1.3):
(a) For the vector field $\boldsymbol{v}=x^{2} \hat{\boldsymbol{x}}+2 y z \hat{\boldsymbol{y}}+y^{2} \hat{\boldsymbol{z}}$, find $\int \boldsymbol{v} \cdot \boldsymbol{d l}$ along the specified paths.
i. $(0,0,0) \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow(1,1,1)$.
ii. $(0,0,0) \rightarrow(0,0,1) \rightarrow(0,1,1) \rightarrow(1,1,1)$.
iii. A straight line from the origin to $1,1,1$.
iv. The closed path going out along 1(a)i and back along 1(a)ii.
(b) Show that

$$
\oint_{\mathcal{P}}(f \nabla g) \cdot d \boldsymbol{l}=-\oint_{\mathcal{P}}(g \nabla f) \cdot d \boldsymbol{l}
$$

2. You might find the following exercises useful if you are rusty with line and surface integrals [this one is not turned in].
(a) Griffiths problem 1.32
(b) Griffiths problem 1.33
3. Due Friday, Jan 18 (Read §1.4):
(a) Let $\boldsymbol{A}=f(r) \hat{\boldsymbol{r}}$. Verify Gauss's theorem for the sphere $r=R$.
(b) Use $\boldsymbol{v}=\hat{\boldsymbol{z}} \cos s+\hat{\boldsymbol{\phi}} s z$ to verify Stokes' theorem on the finite cylindrical surface $s=R, a<z<b{ }^{1}$
[^0]
[^0]: ${ }^{1}$ Cylindrical coordinates in Griffiths are s, ϕ, z.

