## Physics 423, Spring 2019

Notice: We will have an in-class exam on Monday, Jan 28:

- The exam covers Chapter 1 of Griffiths and is worth 50 points.
- There will be $3 \pm 1$ problems, similar to past homework.
- You may bring a $4 \times 6$ card with notes if you like. I will provide something like the formulae on the endpapers of your text.
- I will hold a review session in class Friday, Jan 25.


## Homework Set \# 3

1. Due Wednesday, Jan 23 (Read §1.5):
(a) In class we found that

$$
\int_{0}^{\infty} f(x) \delta\left(x^{2}-2\right) d x=\frac{f(\sqrt{2})}{2 \sqrt{2}}
$$

Verify this result by factoring the argument of the delta function, and then using the identity

$$
\int_{-\infty}^{\infty} f(x) \delta([x-b] c) d x=\frac{f(b)}{|c|}
$$

(b) Let $\boldsymbol{v}(\boldsymbol{r})=(1+\cos \theta) \hat{\boldsymbol{r}} / r^{2}$.
i. Calculate $\boldsymbol{\nabla} \cdot \boldsymbol{v}$.
ii. Calculate $\oint \boldsymbol{v} \cdot d \boldsymbol{a}$ for the sphere $r=R$.
iii. If necessary, correct the divergence result with what you learned in the previous part.
2. Due Friday, Jan 25 (Read §1.6):
(a) The "vector area" of surface $\mathcal{S}$ is defined by $\boldsymbol{a} \equiv \int_{\mathcal{S}} d \boldsymbol{a}$. Show that the vector area of a closed surface is zero. ${ }^{1}$
(b) Similarly, show that $\oint d \boldsymbol{l}=0$.
(c) Use the theorems in Section 1.6 to show that $\boldsymbol{F}=y z \hat{\boldsymbol{x}}+x z \hat{\boldsymbol{y}}+x y \hat{\boldsymbol{z}}$ can be written both as the gradient of a scalar and as the curl of a vector. Then, find the scalar and vector potentials for $\boldsymbol{F}$.

[^0]
[^0]:    ${ }^{1}$ Hint: calculate the components one at a time, for example $a_{x}=\hat{\boldsymbol{x}} \cdot \boldsymbol{a}$.

