# Gauss's Theorem 

Charles Kankelborg

January 2021

## 1 Introduction

The fundamental theorem of calculus may seem obvious to you by now:

$$
\begin{equation*}
\int_{a}^{b}\left(\frac{d}{d x} f(x)\right) d x=f(b)-f(a) \tag{1}
\end{equation*}
$$

What might surprise you is the range of interesting forms this theorem takes when we generalize it to three dimensions. Griffiths $\S 1.3$ discusses the gradient theorem, Gauss's theorem, and Stokes' theorem but provides justification only the gradient theorem. I will derive Gauss's theorem in the next section.

## 2 Deriving Gauss's Theorem

We wish to prove the divergence theorem, also called Gauss's theorem, which states:

$$
\begin{equation*}
\int_{V} \nabla \cdot \mathbf{v} d \tau=\oint_{\partial V} \mathbf{v} \cdot \mathbf{d a} \tag{2}
\end{equation*}
$$

where $\mathbf{v}$ is a vector function of position, and $\partial V$ is the closed surface bounding volume $V$. The vector surface element is $\mathbf{d a}=\hat{\mathbf{n}} d a$, where the surface normal vector $\hat{\mathbf{n}}$ is directed outward.

Gauss's theorem is a scalar equation, but nevertheless the integrals on both sides of the equation are each a sum of three parts, corresponding to $x, y, z$ components of the vector $\mathbf{v}$. Making an equation of just the $v_{x}$ parts,

$$
\begin{equation*}
\int_{V} \frac{\partial v_{x}}{\partial x} d \tau=\oint_{\partial V} v_{x} \hat{\mathbf{x}} \cdot \mathbf{d a} \tag{3}
\end{equation*}
$$

If we can show that equation 3 is true, then all three components of equation 2 must similarly be true, and Gauss's theorem is proved.

The volume $V$ is represented by the brown "potato" in figure 1. Imagine dividing the potato into a large number of "french fries", each of them parallel to


Figure 1: Building up the volume and surface integrals over the "potato" from a collection of "french fries".
the $x$-axis. One such french fry is illustrated in the figure. The volume integral on the left side of equation 3 is given by integrating over all the french fries:

$$
\begin{equation*}
\int_{V} \frac{\partial v_{x}}{\partial x} d \tau=\int d y d z \int_{x_{1}}^{x_{2}} \frac{\partial v_{x}}{\partial x} d x \tag{4}
\end{equation*}
$$

Using the fundamental theorem of calculus, this becomes

$$
\begin{equation*}
=\int d y d z\left[v_{x}\left(x_{2}\right)-v_{x}\left(x_{1}\right)\right]=\int_{\partial V_{2}} v_{x}\left(x_{2}\right) d y d z-\int_{\partial V_{1}} v_{x}\left(x_{1}\right) d y d z \tag{5}
\end{equation*}
$$

where $\partial V_{1}$ and $\partial V_{2}$ are the left and right surfaces of the "peel" enclosing the potato. Of course $v_{x}$ is really a function of all three coordinates; I am just trying to make the notation compact. Taking advantage of the geometrical identity in figure 1, the integral can be rewritten

$$
\begin{equation*}
=\int_{\partial V_{2}} v_{x}\left(x_{2}\right) \hat{\mathbf{x}} \cdot \mathbf{d \mathbf { a } _ { 2 }}+\int_{\partial V_{1}} v_{x}\left(x_{1}\right) \hat{\mathbf{x}} \cdot \mathbf{d \mathbf { a } _ { \mathbf { 1 } }}=\oint_{\partial V} v_{x} \hat{\mathbf{x}} \cdot \mathbf{d a} \checkmark \tag{6}
\end{equation*}
$$

We have proven equation 3 , which in turn proves Gauss's theorem (equation 2). Notice that our proof assumed a very simple potato, in the sense that that each french fry would intersect the peel just twice. A potato with a more complicated shape can be constructed from multiple simple potatoes, so no generality is lost by this assumption. You might want to quickly sketch that out for yourself; for example, if we join two banana-shaped potatoes to make a u-shaped potato, what happens at the shared surface where they meet?

