Let's return to this example and consider the case z<0. @
EXAMPL, 0 UNFoRM  CHARGYD DISK

- AN ~—
e ts it My

s P~
Y
AoE [T g™ -

= . R Aur
E(%ﬁ:—l. G'/“-d(l\___Q:'__ <2%_/ S’J</"<l§l
L) TR T e ), F
° =g <F= 0 g.i\_ 3 S’ q.) g
The constraint z > 0 was employed in taking the limits affer m‘reg\rchon:
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The square root of z°2 is not z, but |z|.
_ -0 [ ' _,Ll.,
RIS TN
The "signum” of z is defined as sgn(z) = z/|z|.
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When we remove the constraint z > 0, we find a
WHAT F % <0 ? dependence on z through the signum function.
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The “signum” of z is defined as sgn(z) = z/|z|. 
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The square root of z^2 is not z, but |z|.
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When we remove the constraint z > 0, we find a dependence on z through the signum function.
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The constraint z > 0 was employed in taking the limits after integration:


