GRIFFITHS $\$ 24$ - WORK k ENERGK
GIVEN $V(\vec{r})$, ThE potential EnkRge of a CHARGE Q AT \vec{r} is

$$
u=Q v(\stackrel{\rightharpoonup}{r})
$$

(REGAV Thas "BoWb" Exhmple)

OPTINAL Example
hamonis motion of a enpege IN A solw spiker with consenat p.

BUT WHAT HAPPRNS WHEN WE ASSEmBLE AN ARRONGEMEAT of charges, $q_{1}, q_{0}, q_{3}, \ldots$ at $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \ldots$?
ImAgIVE bringing in tinke Chargeg one at 4 time from Infinite.

$$
\begin{aligned}
& q_{3} \cdot \vec{r}_{3} \& \vec{b}_{3}=\frac{q_{3}}{4 \pi q_{0}}\left[\frac{q_{2}}{\mu_{23}}+\frac{q_{1}}{\mu_{03}}\right]
\end{aligned}
$$

THE WORK DONE TO ASSEMBCL OVR CMRGE CONfigmation Is:

$$
W=\sum_{i=1}^{N} u_{i}=\frac{1}{4 \pi i} \sum_{i=1}^{N} \sum_{j \neq i+1}^{N} \frac{q_{i} q_{j}}{\mu_{i j}}
$$

Q: SAOVLD THE ORDER OF ASSEMBLS NATTUR? DISCVLS.

$$
A: \frac{W=\frac{1}{8 \pi i_{i}} \sum_{i=1}^{N} \sum_{j \neq i} \frac{q_{i j} q_{j j}}{\mu_{i j}}}{\text { GRIFFITHS EQ.2.41 }} \text { (No!) }
$$

TO RECAP:
WE CONSIDERED THE ENERGY OF AN ASSEMBLAGE OF POINT CHARGES, AND FOUND

$$
W=\frac{1}{8 \sigma_{E}} \sum_{i=1}^{n} q_{i}\left(\sum_{j \neq i} \frac{q_{j}}{n_{i j}}\right)
$$

THIS CAN BE WRITER

$$
W=\frac{1}{2} \sum_{i=1}^{n} q_{i} V\left(\stackrel{\rightharpoonup}{r}_{i}\right)
$$

FROM THIS FORMULA, WE WILL GENERALIZE TO A CONTINUOUS CHARGE DISTRiBUTION

$$
W=\frac{1}{2} \int V d q=\left\{\begin{array}{l}
\frac{1}{2} \int V \rho d V \\
\frac{1}{2} \int V \sigma d a \\
\frac{1}{2} \int V \lambda d l
\end{array}\right.
$$

THE DOMAIN OF THE INTEGRAL MUST INCLUDE ALL OF THE CHARGE.

USING $\quad \rho=\varepsilon_{0} \nabla \cdot \vec{E}$,

$$
W=\frac{\varepsilon_{0}}{2} \int V(\nabla \cdot \vec{E}) d V
$$

BUT $\nabla \cdot(\vec{E} V)=V(\nabla \cdot \vec{E})+\vec{E} \cdot \nabla V=V \nabla \cdot \vec{E}-E^{2}$, so

$$
W=\frac{1}{2} \varepsilon_{0} \int\left[\nabla \cdot(\vec{E} V)+\varepsilon^{2}\right] d V
$$

USING THE DIVERGENCE THEOREM,

$$
W=\frac{1}{2} \Sigma_{0}\left[\int_{V} E^{2} d V+\oint_{S} V \vec{E} \cdot d \vec{a}\right]
$$

$$
\sin \partial d \theta d \phi
$$

IF WE EXPAND THE DOMAIN TO $r \rightarrow \infty$, $\oint_{V} V \vec{E} \cdot d \vec{a} \propto \oint_{\beta} \frac{1}{r} \frac{1}{r^{3}} r^{2} d \Omega \rightarrow 0$. $\therefore W=\frac{1}{2} \varepsilon_{0} \int_{V} E^{2} d V \Rightarrow \frac{1}{2} \varepsilon_{0} E^{2}$ IS AN ENERGY DENSITY.

Q: WHAT is THE ENGRGY REQUIRED TO "ASSEMBLK" A point clarke - FOR instance, an Elgetron?

A: $\quad V=\frac{-e}{4 \pi \varepsilon_{0} r}, \quad \rho=-e^{\delta(\vec{r})}$
(OR WE COULD use This FIELD, $\int \frac{1}{2} \varepsilon_{0} \varepsilon^{2} d V$)

$$
w=\frac{1}{2} \int \rho V d V \infty \quad \int \frac{1}{r} \delta(\vec{r}) d V \rightarrow \infty!
$$

Note That WE GGNORED The "Self EnErgy" of Point charGes in our Derivation. For a continuous CHARGE DISTRIBUTION, IT ISN'T A PROBLEM.

EXAMPLE FIND ThE SELF -ENERGY Of A SPHERICAL SHEL OF RADIUS R AND CHARGE of.

$$
\begin{aligned}
& \sigma=\frac{q}{4 \pi R^{2}}, \quad V=\frac{q}{4 \pi \varepsilon_{0} r}, r \geqslant R \\
& W
\end{aligned} \begin{aligned}
w & =\frac{1}{2} \int \sigma V d a=\frac{1}{2} \sigma V \int d a \\
& =\frac{1}{2}\left(\frac{q^{2}}{16 \pi^{2} \varepsilon_{0} R^{3}}\right) 4 \pi R^{2} \\
& =\frac{q^{2}}{8 \pi \varepsilon_{0} R}
\end{aligned}
$$

Q: HOW BIG WOULD AN E(ECTRON BE If TH S REST MASS WAS EQUIVALENT TO EAM ELSETROSTATLC ENERGY?

A:

$$
\begin{aligned}
m_{e} c^{2} & =\frac{e^{2}}{8 \pi \varepsilon_{0} R} \Rightarrow R=\frac{e^{2}}{8 \pi \varepsilon_{0} m_{e} c^{2}}=1.4 \times 10^{-15} \mathrm{~m} \\
e & =1.6 \times 10^{-19} \mathrm{c} \\
\varepsilon_{0} & =8.9 \times 10^{-12} \mathrm{~m}^{-3} \mathrm{kgg}^{-1} \mathrm{~s}^{2} \text { colL }^{2} \\
m_{e} & =9.1 \times 10^{-31} \mathrm{~kg} \\
c & =3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q: If We have been given $p_{1}(\vec{r})$ and $p_{2}(\vec{r})$, we can calculate

$$
\begin{aligned}
& V_{1}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{P_{1}\left(\vec{r}^{\prime}\right)}{\mu} d V_{2}^{\prime} \\
& \vec{E}_{1}=-\nabla V_{1},
\end{aligned}
$$

AND Similarly \vec{E}_{2} and V_{2}.
WHO ARE VTOT AND $\vec{E}_{\text {TOT }}$ fOR $P_{\text {TOT }}=p_{3}+p_{2}$?
A: $\quad V_{T O T}=V_{1}+V_{2}, \quad \vec{E}_{T O T}=\vec{E}_{1}+\vec{E}_{2}$.
(Principle of superposition)
Q: Now, suppose we calculate W_{1} \& W_{2}. Dues $W_{\text {TOT }}=W_{1}+W_{2}$?

$$
\text { A: } \begin{aligned}
W_{\text {Tor }} & =\frac{1}{2} \varepsilon_{0} \int E_{\text {Tor }}^{2} d V=\frac{1}{2} \varepsilon_{0} \int\left|\vec{E}_{1}+\vec{E}_{2}\right|^{2} d V \\
& =\frac{1}{2} \varepsilon_{0} \int\left(\vec{E}_{1}+\vec{E}_{2}\right) \cdot\left(\vec{E}_{1}+\vec{E}_{2}\right) d V \\
& =\frac{1}{2} \varepsilon_{0} \int\left[\vec{E}_{1}^{2}+\vec{E}_{2}^{2}+2 \vec{E}_{1} \vec{E}_{2}\right] d V \\
& =W_{1}+W_{2}+\varepsilon_{0} \int\left(\vec{E}_{1} \cdot \vec{E}_{2}\right) d V
\end{aligned}
$$

This could be more or Less than $W_{1}+W_{2}$.
\rightarrow GIVE AN EXAMPLE WHERE $W_{\text {TUT }}>W_{1}+W_{2}$.
\rightarrow Give xi example Where $W_{\text {Tot }}<W_{1}+W_{2}$.

EXAMPLE
RECALC ThEe HW PROBLEM WiTH $\vec{E}= \begin{cases}A \frac{\hat{s}}{s}, & a<s<b ; \\ 0, & \text { ELSCOWHzRE. }\end{cases}$
\rightarrow WHAT IS ThE ENSRGY STORED IN TAIS FIELD? 1.E., CALCULATE
$\frac{1}{2} \tau_{0} \int E^{2} d V_{\text {(better limit this to a fixed }}$

\rightarrow FIND THE POTENTIAL $V(s)$
\rightarrow FIND The ENGRGY REQUIRED TO ASHEMBLE The CHARGE configuration (AS FOVND IN The HW sOLUTION),

$$
W=\frac{1}{2} \int V d q
$$

