§5.4. Vector Potential

I lectured directly from Griffiths, but gave the folllowing unique example.

Note how the solution joins together smoothly at $z=0$.

Now, beginning from

$$
\vec{B}=\left\{\begin{array}{l}
-\mu_{0} \frac{V}{R} \frac{\hat{\varphi}}{2 \pi s}, \quad z>0, \cos \theta=z / \sqrt{s^{2}+z^{2}} \\
-\mu_{0} \frac{V}{R} \frac{\hat{\varphi}}{2 \pi s}(1+\cos \theta), \quad z \leqslant 0,
\end{array}\right.
$$

What is the rector potential, $\vec{A}, \ni \vec{B}=\nabla \times A$ and $\nabla \cdot \vec{A}=0$? Let's consider $Z>0$ first.
It is often useful to begin by guessing \vec{A}

$\oint \vec{A} \cdot \overrightarrow{d l}=\int \vec{B} \cdot d\left(\frac{d}{a} \rightarrow\left[\begin{array}{l}\hat{z}\end{array} A_{1}\left(s_{1}\right)-A\left(s_{2}\right)\right]=-\mu_{0} \frac{V}{R} \lambda \int_{s_{1}}^{s_{2}} \frac{d s}{2 \pi s}\right.$

$$
\begin{aligned}
& \vec{A} \cdot d e A\left(s_{1}\right)-A\left(s_{2}\right)=\mu_{0} \frac{v}{R 2 \pi}\left[\ln \left(s_{1}\right) \ln \left(s_{2}\right)\right] \\
& \Rightarrow \text { can conveniently } \operatorname{set} A(0)=0 \text { or }
\end{aligned}
$$

We can't conveniently set $A(0)=0$ or $A(\infty)=0$.
But we can simply choose

$$
\begin{aligned}
& A \rightarrow-\infty \text { as } s \rightarrow 0 \text {; } \\
& A(s)=\mu_{0} \frac{V}{R} \frac{\ln s}{2 \pi} \\
& \text { Ne can simply choose } \\
& A \rightarrow \infty \text { as } s \rightarrow \infty, \\
& \hline f(s) \hat{z}+g(z) \hat{s}]
\end{aligned}
$$

For $z<0$ let's try $\vec{A}=-\mu_{0} \frac{V}{R 2 \pi}[f(s) \hat{z}+g(z) \hat{s}]$
As you can see, it's not

This looks tricky! How about $\vec{A}=-\mu_{0} \frac{V}{R 2 \pi}[f(r) \hat{\theta}+g(\theta) \hat{r}]$

$$
\begin{aligned}
& \text { This looks tricky! How about } \\
& (\nabla \times[])_{\varphi}=\frac{1}{r}\left(\frac{\partial}{\partial r}[r f]-\frac{\partial g}{\partial \theta}\right)=\frac{1+\cos \theta}{5}=\frac{1+\cos \theta}{r \sin \theta} \\
& A h_{a!} \quad f=0, \quad g=-\int d \theta \frac{1+\cos \theta}{\sin \theta}=-\ln (1-\cos \theta)
\end{aligned}
$$

$A h_{a}!\quad f=0, \quad g=-\int d \theta \frac{1+\cos \theta}{\sin \theta}=-\ln (1-\cos \theta) \quad($ ha! $)$

$$
\vec{A}=\left\{\begin{array}{l}
-\mu_{0} \cdot \frac{V}{R} \frac{\hat{r}}{2 \pi} \ln (1-\cos \theta), \quad z<0 \\
\mu_{0} \frac{V}{R} \frac{\ln s}{2 \pi} \hat{z}, \quad z>0 \\
\text { this solution is discontinuous at }
\end{array}\right.
$$ easy for this problem to work out a vector potential that is wellbehaved across $\mathrm{z}=0$.

Unfortunately, this solution is discontinuous at $z=0$,
even though is not. even though \vec{B} is not.
${ }^{\text {I }}$ I could have chosen $f=\frac{1+\cos \theta}{\sin \theta}, \quad g=0$.
This would also be discontinuous with the $z>0$ solution, and it would have $\nabla \cdot \vec{A} \neq 0$.

