
Physics 567
Homework 5
Advection of Atmospheric Aerosols
Due Friday, April 26, 2024

Convective atmospheric eddies (thermally
driven vortices with the axis parallel to the
ground) of 1 km size often form just above the
Earth’s surface. These eddies pick up dust
particles and water droplets (aerosols) and
carry (advect) them to overlying mesoscale
(10 km) eddies that reach up to the lower
boundary of the stratosphere (10-20 km alti-
tude). In this assignment, you will construct
an elementary 2D simulation of the trajec-
tory of an aerosol particle (trapped?) in an
idealized system of steady, 1 km convective
eddies.1

The aerosol particle experiences two forces:
gravity and aerodynamic drag. The equation
of motion is

ẍ = −gŷ +
1

2m
CDAρ |w − ẋ| (w − ẋ)

where x = (x, y) is the particle position. The
y-axis points up. The dots represent time
derivatives, A is the cross-sectional area of
the (spherical) particle, g is the acceleration
of gravity, CD is the drag coefficient, ρ is
the density of the atmosphere, and m is the
mass of the particle. Assume that the parti-
cle has the density of water. The coefficient
of drag for a sphere is highly dependent on

1The real atmosphere has an evolving, complex
chain of eddy systems, including smaller scale (100m)
turbulent eddies that serve to enhance particle diffu-
sion. Aerosols also experience diffusion due to Brow-
nian motion. We will ignore these effects.

the Reynolds Number (Re):

CD ≈ 24

Re

(
1 +

Re2/3

6

)
, Re ≲ 1000,

where Re ≡ ρvd

η
.

The speed v is the magnitude of the veloc-
ity of the fluid relative to the particle (v ≡
|w − ẋ|); d is the particle diameter, and η is
the viscosity of air.
We need a plausible expression for the con-

vective velocity field w(x, y). In fluid flow,
conservation of mass is embodied in the con-
tinuity equation,

∂ρ

∂t
= −∇ · (ρw).

In our simplified world, fluid flow will be
steady ( ∂

∂t
= 0) and incompressible (ρ = con-

stant). The velocity field therefore has zero
divergence. This is easily accomplished in 2D
by defining w in terms of a stream function
ψ(x, y) :

wx = −∂ψ
∂y
, wy =

∂ψ

∂x
.

We choose the stream function

ψ(x, y) = aw0 cos
(πx
2a

)
sin

(πy
2a

)
.

The contours of the stream function are the
streamlines (field lines of the velocity field):
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Note that the vortex directions alternate in a
checkerboard pattern. This is (crudely) what
convection cells look like in cross-section.
Note that the period of circulation for a given
air molecule depends on which streamline it
is on. With that caveat, we somewhat ar-
bitrarily define the convective turnover time
as

τ ≡ 2πa

w0

.

Your assignment:

1. Run simulations for particle diameters
d = 1, 10, 100, 1000µm (microns). For
each aerosol particle, produce a plot
of the trajectory x, y for 10 convective
turnover times. Use the following initial
conditions:

x0 = 0, y0 = 1.5 km,
ẋ0 = 0, ẏ0 = 0.

2. Find the largest size of particle that can
be trapped in the vortex with the above
initial conditions. We will deem the par-
ticle trapped if it does not reach ground
(y = 0) within 10 convective turnover
times.

Use the following parameter values in your
simulation:

particle density . . . 1000 kg/m3

air density ρ 1 kg/m3

vortex speed w0 10m/s
vortex radius a 1000m
air viscosity η 2× 10−5Ns/m2

gravitational acceleration g 10m/s2

Turn in the following by email to the
grader:

1. Well-commented source code.

2. Trajectory plots for each of the particle
sizes specified, for 10 turnover times.

3. Answer to the question: what is the
largest size particle that will remain
trapped? Your answer should be within
0.1µm or better. Include program out-
put to substantiate your answer.

The last part will be more tractable if you
automate your search. Please be advised that
whether a particle is trapped may not be a
monotonic function of particle size.
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