Tridiagonal Systems

Charles Kankelborg

Rev. January 15, 2009

1 The Problem

A matrix equation $M\mathbf{u} = \mathbf{r}$ is just a way of writing N linear, algebraic equations. The *i*th equation is:

$$\sum_{j} M_{ij} \, u_j = r_i. \tag{1}$$

The standard problem is to solve for **u** given M and **r**. A square matrix is said to be *tridiagonal* when

$$M_{ij} = 0, \quad |i - j| > 1.$$
 (2)

For example,

$$\begin{pmatrix} b_1 & c_1 & 0 & 0\\ a_2 & b_2 & c_2 & 0\\ 0 & a_3 & b_3 & c_3\\ 0 & 0 & a_4 & b_4 \end{pmatrix} \begin{pmatrix} u_1\\ u_2\\ u_3\\ u_4 \end{pmatrix} = \begin{pmatrix} r_1\\ r_2\\ r_3\\ r_4 \end{pmatrix}.$$
 (3)

2 Algorithm

Have a look *Numerical Recipes* Section 2.4. The *Numerical Recipes* function tridag is easily understood without LU decomposition.

To solve the 4×4 system in equation 3 for **u**, we begin by using row 1 to eliminate a_2 from row 2. Similarly, we eliminate all the a_i row by row.

Here is how the tridag implementation works. The first row stands for the equation:

$$b_1 u_1 + c_1 u_2 = r_1.$$

Let
$$\beta_1 = b_1,$$
 (4)

$$v_1 = \frac{r_1}{\beta_1},\tag{5}$$

$$\gamma_2 = \frac{c_1}{\beta_1} \tag{6}$$

If we divide row 1 by β_1 , its equation becomes

$$u_1 + \gamma_2 \, u_2 = v_1. \tag{7}$$

The equation for the second row is:

$$a_2 u_1 + b_2 u_2 + c_2 u_3 = r_2.$$

Let
$$\beta_2 = b_2 - a_2 \gamma_2,$$

 $v_2 = \frac{(r_2 - a_2 v_1)}{\beta_2},$
 $\gamma_3 = \frac{c_2}{\beta_2}.$

We now subtract a_2 times row 1 from row 2. Dividing the result by β_2 , our new row 2 is written:

$$u_2 + \gamma_3 \, u_3 = v_2. \tag{8}$$

This process may be repeated over the range i = 2, 3, ..., N, using the recursion formulas

$$\gamma_i = \frac{c_{i-1}}{\beta_{i-1}},\tag{9}$$

$$\beta_i = b_i - a_i \,\gamma_i,\tag{10}$$

$$v_i = \frac{r_i - a_i \, v_{i-1}}{\beta_i}.$$
 (11)

The result is that the matrix equation is rewritten in uper triangular form. For our 4×4 example,

$$\begin{pmatrix} 1 & \gamma_2 & 0 & 0 \\ 0 & 1 & \gamma_3 & 0 \\ 0 & 0 & 1 & \gamma_4 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}.$$
 (12)

This problem is trivially solved by starting from the bottom and back substituting as you go up:

$$u_N = v_N, \tag{13}$$

$$u_i = v_i - \gamma_{i+1} \, u_{i+1}. \tag{14}$$

3 How to Break the Algorithm

If $\beta_i = 0$, for some *i*, the program quits to avoid a division by zero. The authors of *Numerical Recipes* assure us that this doesn't happen very often. For example, it can be shown that $\beta_i = 0$ cannot occur in the calculation of y''_i for the cubic spline.

4 Applications

Tridiagonal matrices come up in a variety of contexts:

- Cubic splines $(NR \S 3.3)$
- A concluding step in diagonalization of matrices $(NR \S\S 11.0, 11.2)$
- Implicit differencing schemes for diffusive PDEs $(NR \S 19.2)$
- Cyclic reduction methods for PDE BV problems $(NR \S 19.4)$

5 MATLAB and Octave

In MATLAB or Octave, the code u = M r will solve the matrix equation for u. The backslash operator is smart enough (as of MATLAB 7.5, and Octave 2.9) to test whether M is tridiagonal. If so, then a fast algorithm like the one described above is used. This all requires that your matrix is stored as a sparse matrix; see, e.g., spdiags.