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A Parametric Estimation Approach to
Instantaneous Spectral Imaging

Figen S. Oktem, Student Member, IEEE, Farzad Kamalabadi, Member, IEEE, and Joseph M. Davila

Abstract— Spectral imaging, the simultaneous imaging and
spectroscopy of a radiating scene, is a fundamental diagnostic
technique in the physical sciences with widespread application.
Due to the intrinsic limitation of two-dimensional (2D) detectors
in capturing inherently three-dimensional (3D) data, spectral
imaging techniques conventionally rely on a spatial or spectral
scanning process, which renders them unsuitable for dynamic
scenes. In this paper, we present a nonscanning (instantaneous)
spectral imaging technique that estimates the physical parameters
of interest by combining measurements with a parametric model
and solving the resultant inverse problem computationally. The
associated inverse problem, which can be viewed as a multiframe
semiblind deblurring problem (with shift-variant blur), is for-
mulated as a maximum a posteriori (MAP) estimation problem
since in many such experiments prior statistical knowledge of
the physical parameters can be well estimated. Subsequently, an
efficient dynamic programming algorithm is developed to find
the global optimum of the nonconvex MAP problem. Finally,
the algorithm and the effectiveness of the spectral imaging
technique are illustrated for an application in solar spectral
imaging. Numerical simulation results indicate that the physical
parameters can be estimated with the same order of accuracy
as state-of-the-art slit spectroscopy but with the added benefit
of an instantaneous, 2D field-of-view. This technique will be
particularly useful for studying the spectra of dynamic scenes
encountered in space remote sensing.

Index Terms— Computational spectral imaging, imaging spec-
troscopy, inverse methods, dynamic programming, multiframe
image deblurring, parameter estimation of superimposed signals,
separable nonlinear least squares problems.

I. INTRODUCTION

OBSERVING the spectrum of a radiating scene, known
as spectral imaging or imaging spectroscopy, is a

fundamental diagnostic technique in the physical sciences
with application in diverse fields such as physics, chemistry,
biology, medicine, astronomy, and remote sensing. The mea-
sured spectrum enables sensing the properties of the scene
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and is the main source of information about the chemical
composition and physical properties of targeted objects. For
example, in astrophysical imaging of space plasmas, energy
transitions of the constituent matter in the plasma produce
spectral emission lines, and measurements of the emitted
spectrum provide essential information for inferring the
plasma parameters (such as density, temperature, and velocity).
Such measurements acquired as a function of time enable the
investigation of the complex plasma behavior by revealing how
currents and heat flow through the plasma [1], [2].

The objective of spectral imaging is to form images of a
scene as a function of wavelength. For a two-dimensional (2D)
scene, this requires obtaining a three-dimensional (3D) dataset:
one for spectral and two for spatial dimensions. However,
obtaining this 3D dataset with inherently 2D detectors pose
intrinsic limitations on the spatio-spectral extent of the tech-
nique.

To address this limitation, conventional spectral imag-
ing techniques rely on a scanning process to build up the
3D data cube from a series of 2D measurements that are
acquired sequentially. Typically this data cube is acquired
using a spectrometer with a long slit scanning the scene
spatially or by using an imager with a series of spectral filters
scanning the scene spectrally. In the former case (referred
to as rastering or pushbroom) only a thin slice of the scene
is observed at a time, whereas in the latter case only one
spectral band is observed at a time. Similarly, Fourier and
Hadamard transform-based spectrometers perform scanning in
a transformed domain (through their movable parts) to build up
the 3D data cube [3]. As a result, these conventional methods
are best suited for spectral imaging of scenes that remain
stationary during the scanning process involved. For dynamic
scenes, however, the conventional methods are subject to
temporal artifacts.

To effectively operate with non-static scenes, methods that
reconstruct the 3D data cube from a single-shot measurement
recently have been proposed based on tomographic [4]–[8],
and compressive sensing [9]–[12] approaches. The main idea
in the tomographic approach is to construct the 3D data
cube from its 2D projections, where the projections are
obtained through spectrally dispersed images of the scene [4],
each dispersed in a different direction and by a different
amount (through different diffraction orders of an optical
grating). These tomographic techniques, known as computed
tomography imaging spectrometers (CTIS), require a large
set of projections (i.e. dispersed images) to be captured at
once, hence demanding a large detector area to be used.
The resulting cost generally limits either the field-of-view
(FOV) or the resolution. In addition, these techniques suffer
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Fig. 1. Comparison of (a) the conventional slit spectrometer with (b) instantaneous spectral imager presented in this paper. In both cases, an imaging unit
(e.g. lens, mirror) focuses a 2D scene on an image plane. In a slit spectrometer (a), a narrow slit lies on the image plane to limit the FOV to a 1D portion of
the scene. The light that passes through the slit is input to a wavelength dispersive unit, which generally consists of collimator optics (e.g., lens), a dispersive
element (e.g., diffraction grating), and focusing optics (e.g., lens). Each spectral line in the incoming light is dispersed according to the wavelength and
imaged onto a 2D detector. To obtain the spectrum of the entire 2D scene, the slit is moved within the image plane to scan the scene spatially. For the
instantaneous spectral imager (b), the slit is widened to achieve an instantaneous 2D FOV. This causes an overlap of spatial and spectral information on
the detector: dispersed spectral lines from all spatial positions within the FOV are now superimposed. To decompose this multiplexed data computationally,
multiple dispersed images with different diffraction orders are recorded using multiple detectors (in this case three detectors for the orders +1, 0, and −1).

from their incapability of fully sampling the Fourier domain
representation of the data cube, which results from the limited
angle of projections and the projection-slice theorem [5].
The unsampled Fourier volume, known as the missing cone,
makes unique reconstruction of the data cube impossible.
Consequently, the resulting tomographic reconstruction would
suffer from artifacts unless the data deficiency, arising from the
missing cone problem, is fully compensated for with additional
prior knowledge.

The compressive sensing based single-shot approaches,
known as coded aperture snapshot spectral imaging (CASSI)
techniques [9]–[12], exploit the prior knowledge resulting
from the assumed sparsity of the spectral data cube. These
approaches acquire only a single projection with a coded
aperture while simultaneously requiring that the data cube
be sparse in some transform domain. Although the imposed
sparsity assumption may not always hold, for the cases where
such restriction holds, the 3D data cube can be reconstructed
from the 2D coded measurement using compressive sensing
methods. Several other compressive spectral imagers [13]–[17]
also exist for compressive acquisition of the spectral data
cube with different sensing architectures. Although these

imagers require multiple successive acquisitions, instead
of a single-shot measurement, rendering them not ideal
for dynamic scenes, they offer advantages over their
conventional counterparts such as improved reconstruction
and resolution and reduced acquisition time and storage
requirements.

In this paper, we develop a parametric single-shot approach
to achieve instantaneous (non-scanning) spectral imaging.
This approach is specifically designed for scenes that have
spectra consisting of discrete lines, which are encountered in
various applications [18]–[22] involving astrophysical imag-
ing of space plasmas [1], [2] and atmospheric physics
[3], [23]–[25]. Figure 1b depicts a schematic of the observing
system involved. This system is quite similar to a conventional
slit (pushbroom) spectrometer illustrated in Fig. 1a, but, unlike
a slit spectrometer, this system has an instantaneous 2D FOV
(rather than a 1D FOV limited by a slit). Also, because
spectrally dispersing the 2D input image causes an overlap of
spatial and spectral information on the 2D detector, multiple
dispersed images of the scene are acquired simultaneously in
order to gather the needed information for decomposing this
multiplexed data.
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The system involved in this parametric approach is
similar to a CTIS system used in the snapshot tomographic
approach [4]–[8], but our technique relies on a parametric
approach to reconstruct the 3D data cube from significantly
smaller number of dispersed images, i.e., projections, hence
allowing a smaller detector area. We note that this task
is accomplished by compensating for the resulting missing
cone with the prior knowledge that the spectra consist of
discrete lines and incorporating this knowledge into the image
formation framework via a parametric model.

The system involved in this parametric approach is also
similar to a CASSI system [10] with a single disperser, but
different in that the CASSI system uses a coded aperture to
additionally modulate the imaged 2D scene. While the CASSI
system uses the sparsity of the data cube accompanied by
the coded measurements for the reconstruction, our method
instead uses a parametric reconstruction approach that exploits
the specific structure of the spectra and measurements acquired
at multiple diffraction orders.

The focus of this paper is the problem of estimating the
physical parameters of interest from the measurements of this
instantaneous spectral imager by using a parametric model for
the measurements. Based on this parametric model, the esti-
mation problem can be viewed as a 1D multiframe semi-blind
deblurring problem with shift-variant blur, where multiple
blurred images of the same scene are obtained through mul-
tiple dispersed images, each with a different diffraction order.
We formulate the inverse problem as a maximum a posteriori
(MAP) estimation problem since in many such experiments
prior statistical knowledge of the physical parameters can
be well estimated. The resulting nonconvex MAP problem
is solved by developing an efficient dynamic programming
algorithm, which is an extension of a previously proposed
algorithm for maximum likelihood parameter estimation of
superimposed signals [26], [27]. The developed algorithm
yields parameter estimates that are close to the global optimum
of the MAP problem. A local optimization algorithm initial-
ized with these estimates can then be used to obtain the desired
global optimum. Through numerical investigations, we verify
the results of a Cramer-Rao bound analysis in [28] and [29]
demonstrating that the physical parameters can be estimated
with the same order of accuracy as the conventional slit
spectroscopy, but with the added benefit of an instantaneous
2D FOV.

The paper is organized as follows. In Section II, we
introduce the parametric forward model (for the dispersed
images). The inverse problem is formulated in Section III as a
MAP problem. Section IV presents the dynamic programming
algorithm for efficiently solving the MAP problem. Numerical
simulation results for an application in solar spectral imaging
are presented in Section V. Section VI concludes the paper.

II. PARAMETRIC FORWARD PROBLEM

In a slit spectrometer (see Fig. 1a), a narrow slit lies
on the image plane of a lens or mirror, hence limiting the
field-of-view to a 1D portion of the scene. As a result, only
a thin slice of the scene is observed at a time. The light

that passes through the slit then enters into a wavelength
dispersive unit where each spectral line in the incoming light
is dispersed according to wavelength and imaged onto a 2D
detector [3]. Because the dispersion plane is aligned to be
perpendicular to the long side of the slit, one dimension in
the detector corresponds only to the wavelength (λ) whereas
the other dimension corresponds to the spatial dimension
(y) admitted through the slit. Hence the spatial and spectral
information do not overlap on the detector, and each dispersed
spectral line observed at the detector is associated with a single
position on the scene. To obtain the spectral information of
an entire 2D scene, the scene is scanned spatially using the
slit, i.e., the 1D instrument FOV is pointed to a series of
adjacent spatial positions (x) on the scene with a narrow slit
exposure taken at each pointing location. This approach is
not suitable for dynamic scenes which evolve on timescales
faster than the scanning process involved. For example, in solar
spectroscopy, the scanning takes on the order of minutes
(to cover an active/dynamic region of interest) whereas the
physical processes occurring in solar plasma change on the
order of seconds [6].

To overcome this limitation with an instantaneous spectral
imager, the width of the entrance slit is increased to obtain
an instantaneous 2D FOV (see Fig. 1b), such that a 2D
image of the scene is now allowed at the image plane of
the imaging unit. Then the light from the 2D scene enters
into the dispersive unit where each spectral line in the
incoming beam is dispersed and imaged onto a 2D detec-
tor. Because the input to the dispersive system is now a
2D image, dispersion causes an overlap of spatial and spectral
information on the detector. More specifically, dispersed spec-
tral lines from all positions along the spatial dimension parallel
to the dispersion plane are now superimposed at the output.
To overcome the difficulty of decomposing this multiplexed
data, multiple spectrally dispersed images of the 2D scene
are recorded simultaneously using multiple detectors. These
dispersed images differ by the amount and direction of disper-
sion as determined by different diffraction (spectral) orders. In
particular, a negative diffraction order indicates the reversal of
the dispersion direction, and higher diffraction orders indicate
larger amounts of dispersion.

A. Model Assumptions

First we list the assumptions that are used in the develop-
ment of the parametric forward model.

• The spectrum is composed of discrete spectral lines, and
each spectral line has a Gaussian shape due to thermal
broadening [2], [21], [30].

• The medium of interest is optically thin [2]; hence
scattering and absorption effects are negligible, and do
not contribute to the shape of the spectrum.

• Continuum background is negligible.
• Each dispersed image is monochromatic, hence resulting

from a single spectral line with known central wave-
length λ0.

The application domains where these assumptions commonly
hold are various [18]–[22] including astrophysical imaging of
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Fig. 2. Spectrum at a single spatial location. In the parametric model, the
spectrum at the mth spatial location is modeled by a Gaussian spectral line,
and is fully characterized by the three parameters: integrated line intensity fm ,
a line width �m , and a Doppler shift εm .

space plasmas [1], [2] and atmospheric physics [3], [23]–[25].
Here the third assumption requires that either the continuum

background is relatively small compared to the sum of the
contributions of the dispersed spectral lines, or it can be
subtracted from the measurements through pre-processing.
Moreover, the last assumption will be approximately true if
one spectral line is dominant (i.e. strongest) in the passband of
the instrument (i.e. the spectrum filtered by a spectral filter is
dominated by a single spectral line), and if that does not hold,
the FOV can be made small enough such that monochromatic
dispersed images of the scene, resulting from adjacent spectral
lines in the spectrum, do not overlap on the detector. This
will allow us to use each monochromatic image separately
for the reconstruction as before. Hence here we restrict our
formulation to the cases where the spectrum at each spatial
position consists of only one Gaussian spectral line. Our
goal in the inversion is then to estimate the parameters of
the Gaussian spectral lines at all spatial positions within the
2D FOV.

B. Parametric Image Formation Model

In the parametric model, the spectrum at each spatial
location is modeled by a Gaussian spectral line. With this
assumption, the dispersed spectral line from pixel m′ can
be fully characterized by three parameters of interest: an
integrated line intensity (strength) fm′ , a line width (broad-
ening) �m′ , and a line center shift (Doppler shift) εm′
(see Fig. 2). Here the Gaussian assumption is due to thermal
broadening [2], [21], [30]. The line width is the result of the
thermal motions of the emitting particles along the line of sight
in the radiating scene such that the width is proportional to
the temperature of the emitters. Doppler shifts in wavelength
(variations in the line center position with respect to the central
wavelength λ0) are associated with coherent flows along the
line of sight.

Dispersed images are then expressed as superposition of
dispersed spectral lines from different spatial positions on
the scene. If the dispersion plane of the dispersive unit is
aligned to be parallel to the columns of pixels on the detector
(as illustrated in Fig. 1b), then spectra from neighboring
columns are not mixed; that is, in the dispersed image,

Fig. 3. Illustration of one of the columns of the simulated dispersed image (in
a ten-pixel detector column). Bars correspond to the total intensity observed
at each pixel, and colored spectral lines show the contributions from different
pixels.

spectral lines only from positions along a single column are
superimposed. This allows us to treat the 2D problem as a 1D
problem where each column of the dispersed image is modeled
independently.

Then considering a column of pixels of length M , the
dispersed spectral lines from all of these pixels are superim-
posed; hence the observed intensity at any detector pixel is the
sum of contributions from all of these spectral lines. Fig. 3
illustrates this superposition on a single column of pixels.

Consequently, the observed intensity at any detector pixel is
given by the sum of contributions from all of these parametric
spectral lines. In particular, the contribution of each spectral
line (to the total intensity observed at a pixel) is given by
the integrated intensity of the spectral line over that pixel.
Let x ′ be a continuous variable in pixel units that denotes the
vertical location on the detector, and let the mth detector pixel
correspond to the range m − 1/2 ≤ x ′ < m + 1/2, where
m = 1, . . . , M . Then the contribution of the spectral line at
pixel m′ to the total intensity at pixel m can be found by
integrating the Gaussian spectral line over the mth pixel:

cm′ =
∫ m+1/2

m−1/2

fm′√
2π |a|�m′

e
− (x ′−m′−a εm′ )2

2(a�m′ )2 dx ′, (1)

= fm′√
2π |a|�m′

∫ 1/2

−1/2
e
− (x ′+m−m′−a εm′ )2

2(a�m′ )2 dx ′, (2)

= fm′
erf(t2) − erf(t1)

2
, (3)

where the error function erf(t) is

erf(t) = 2√
π

∫ t

0
exp(−x ′2)dx ′, (4)

t1,2 = m − m′ ∓ 1/2 − aεm′√
2 | a | �m′

, (5)

and both line width �m′ and Doppler shift εm′ are measured in
pixel units and in the first diffraction order (a = +1). At higher
orders, these are scaled by the spectral order a because the
physical spread of any spectral interval on the detector is
enlarged by the order a (since the dispersion amount varies
linearly with order) [31]. Also a negative sign in the order
indicates reversal of the direction of dispersion, which affects
the relative direction of line center shift (Doppler shift).
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Then the total intensity at the detector pixel m, denoted
by ya

m , is given by the sum of contributions from all spectral
lines at pixels m′ = 1, . . . , M:

ya
m =

M∑
m′=1

fm′
erf(t2) − erf(t1)

2
if a �= 0, (6)

for all m = 1, . . . , M . This is true for any dispersed image
with order a �= 0. For the zero order image, which is the result
of direct imaging without any dispersion, the total intensity at
each pixel is simply the integrated line intensity of the spectral
line at that pixel:

y0
m = fm . (7)

Subsequently, the complete parametric model for the inten-
sities of the ath order image can be expressed as

ya
m =

M∑
m′=1

fm′φa
m−m′(�m′), (8)

where �m′ = [εm′ ,�m′ ], and the contribution amount
φa

m−m′(�m′) is

φa
m−m′(�m′) =

⎧⎨
⎩

erf(t2) − erf(t1)

2
if a �= 0;

δm−m′ if a = 0,
(9)

with δm denoting the Kronecker delta function. The amount
of contributions from superimposed signals are known up to
the parameters �m′ and contain the nonlinearity in the model.

The unknowns in this model are the spectral line parame-
ters �m′ = [�m′ , fm′ ] satisfying the constraints �m′ ∈ �.
The constraint set � equals to 	 × 
, where 	 and 

denote the constraint sets for �m′ and fm′ , respectively:
	 = {(εm′ ,�m′) ∈ R × R

+ : |εm′ | ≤ εmax and �min ≤ �m′ ≤
�max}, and 
 = { fm′ ∈ R

+ : fmin ≤ fm′ ≤ fmax}. (The
number of superimposed signals is known, and equal to the
number of pixels M .)

If we define the vectors ya = [ya
1 . . . ya

M ]�, f =
[ f1 . . . fM ]�, ε = [ε1 . . . εM ]�, and � = [�1 . . .�M ]� (with
the superscript � denoting the transpose of a vector), each of
these vectors has the size M . Then, based on the parametric
model, each dispersed image ya can be viewed as a blurred
version of the same input image f with a different spatially-
varying filter of unknown parameters ε and �. On the other
hand, when the order is zero, there is no dispersion and hence
no blur on the input image; that is y0 = f .

C. Observation Model With Noise

In vector-matrix form, the observation model with noise is
given by

ỹa =
M∑

m′=1

fm′ha
m′(�m′) + na, (10)

where

ha
m′ (�m′) = [φa

1−m′(�m′), . . . , φa
M−m′ (�m′)]�, (11)

and na = [na
1 . . . na

M ]� is the noise vector with na
m ∼ N(0, σ 2

a )
representing white Gaussian noise that is uncorrelated across

both different pixels m and orders a. In practice this noise
model is valid when the following conditions are satisfied:
first, photon noise is the dominant source of noise in the mea-
surements rather than the thermal and readout noise (which
can be ensured by sufficiently long integration time); second,
a strong spectral line is measured through all pixels (so that the
values of ya

m are large enough to well approximate the poisson
noise as Gaussian noise); third, signal-to-noise ratio (SNR) is
sufficiently high (such that noise standard deviation can be
approximated as constant over each dispersed image).

Here we are interested in the case that multiple
dispersed images at different diffraction orders are simulta-
neously available. Let A = {a1, a2, . . . , aN } be the set of
all orders that are measured with N being the number of
different orders, and {σa1, σa2 , . . . , σaN } be the corresponding
noise standard deviations for these measurements. Defining the
M × M matrix

Ha(�) = [ha
1(�1), . . . , ha

M (�M ))], (12)

with � = [��
1 , . . . ,��

M ]� (i.e. � = [ε, �]), the observation
model for each order a can be rewritten more compactly as

ỹa = Ha(�) f + na . (13)

Then by stacking all measured dispersed images into a single
vector, ỹ, the complete model becomes

ỹ = H(�)f + n, (14)

where

ỹ =

⎡
⎢⎢⎢⎣

ỹa1

ỹa2

...
ỹaN

⎤
⎥⎥⎥⎦, H(�) =

⎡
⎢⎢⎢⎣

Ha1(�)
Ha2(�)

...
HaN (�)

⎤
⎥⎥⎥⎦, n =

⎡
⎢⎢⎢⎣

na1

na2

...
naN

⎤
⎥⎥⎥⎦.

III. INVERSE PROBLEM

In the inverse problem, the goal is to estimate the unknown
spectral line parameters f and � from the measurements ỹ
based on the model (14). This problem can be viewed as a
multiframe, semi-blind deblurring problem with shift-variant
blur. Here semi-blind refers to the fact that although the
parametric form of each blur is known, the blur parameters
� and ε are unknown and must therefore be estimated jointly
with the original image f . The term multiframe refers to the
availability of multiple blurred images of the same object
through different diffraction orders.

We formulate the inverse problem as a maximum
a posteriori (MAP) estimation problem that incorporates prior
knowledge of the statistics of the spectral line parameters.
Such priors can be obtained from the measurements of existing
conventional pushbroom spectrometers, as will be illustrated
in Section V-A. Incorporation of prior information helps to
regularize the inverse problem, hence prevents noise amplifi-
cation that would result from over fitting to the noisy data.

Treating the parameter vectors f , �, and ε as independent
random vectors, the MAP estimates of f , �, and ε from the
measurements ỹ are given by

arg max
f∈
M

[ε,�]∈	M

p(ỹ | f,�, ε) p(f)p(�)p(ε), (15)
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where p(ỹ | f,�, ε) represents the conditional probability
density function (pdf) of ỹ given f , �, and ε (equivalently,
the likelihood function of the unknown parameters), and
p(f), p(�), and p(ε) denote the prior distributions. These
prior distributions specify the probability of each parameter
independently from the observed data; hence they describe
the information we have on each parameter prior to observing
the data.

On the other hand, the conditional pdf p(ỹ | f,�, ε) comes
from the noisy observation model in (10) and (14), and has
the following form:

p(ỹ | f,�, ε) =
N∏

i=1

1

(
√

2πσai )
M

e
− 1

2σ2
ai

||ỹai −Hai (�)f||22
. (16)

The role of this pdf in the estimation problem is to force
the estimates of f , �, and ε to match the observation model
closely.

Note that a noisy observation of f is available through the
zeroth order image, ỹ0. This gives an immediate statistical
model for f . Hence if ỹ0 is observed at a sufficiently high
SNR such that the conditional pdf p(ỹ0 | f,�, ε) is more
concentrated around the true value of f as compared to the
prior of f (yielding the prior p(f) to be effectively constant
where the conditional pdf p(ỹ0 | f,�, ε) is nonzero), then
the prior of f is not necessary to yield a useful estimate. For
this reason, we ignore p(f) in the MAP formulation, which
yields a simpler form of a separable nonlinear least squares
problem [32], and to a more efficient estimation algorithm
(as will be discussed in the next section). However, we note
that if it were desired to keep the prior p(f) in the MAP
formulation, a dynamic programming algorithm could still
be derived to solve the MAP problem, but owing to less
efficiency.

For the priors p(�) and p(ε), we assume that parameters at
different pixels are independently distributed. After combining
all of these together, and taking the logarithm of (15), the MAP
estimation problem becomes

min
f∈
M

[ε,�]∈	M

{ N∑
i=1

1

2σ 2
ai

||ỹai − Hai (�)f ||22

−
M∑

m=1

(log p(�m) + log p(εm))

}
. (17)

We can express this as

min
f∈
M

�∈	M

{
||ỹ − H(�)f ||2W +

M∑
m=1

�(�m)

}
, (18)

where �(�m) = −2 log p(�m) − 2 log p(εm) is the regu-
larization functional arising from priors, and W denotes the
weighted norm in (17) where for each diffraction order the
sum of squared residuals is weighted with the reciprocal of
the noise variance at that order. That is, in vector-matrix form,
||.||2W = (.)∗W(.) with W being the inverse covariance matrix
for the data, and superscript ∗ denoting the conjugate transpose
of a vector.

This inverse problem belongs to the class of separable
nonlinear least squares problems [32] with regularization.
In these problems the observation model is given by a
linear combination of parametrically prespecified nonlinear
functions. The parameters of interest can be grouped into
two categories: parameters that affect the observations in a
linear fashion (f in our case), and parameters that affect the
observations in a nonlinear fashion (� in our case). We note
that implicit in the formulation of the estimation problem is
that (18) has a unique global minimum.

IV. DYNAMIC PROGRAMMING (DP) ALGORITHM

We now focus on developing an efficient and globally
converging algorithm for solving our MAP problem. Note that
this MAP estimation problem requires solving a nonlinear and
nonconvex optimization problem with possibly local minima.
(Nonconvexity of the problem is apparent since the Hessian
matrix of the objective function is not positive semidefinite for
all feasible points [33].) This can create difficulty in efficiently
finding the global minimum of the problem using local opti-
mization methods such as gradient-descent type methods [34]
and expectation-maximization type algorithms [35]. This is
because such methods can converge only to one of the local
minimums depending on the initialization. Many of the meth-
ods proposed for the general separable nonlinear least squares
problems [32] and for problems involving superimposed
signals (see [36]–[38]), are such local optimization methods.

While efficient local optimization methods may suffer from
convergence to local minima, global optimization methods
can guarantee convergence to the global solution. There are
two types of general-purpose global optimization methods:
deterministic versus stochastic. The deterministic global opti-
mization methods (such as exhaustive search, branch and
bound method [39]) can guarantee convergence to a global
solution within a certain tolerance value; but it is not practical
to employ these methods in most applications because of
their high computational complexity [40]. On the other hand,
stochastic methods (such as simulated annealing) lower the
computational cost in return for weaker guarantees for global
convergence (in probabilistic sense) [41].

Here we develop an efficient global optimization method,
specialized for our problem, which combines the strengths
of deterministic and stochastic (global optimization) methods:
global convergence guarantee within a certain tolerance value,
as the deterministic approaches, and lower computational
complexity, as the stochastic approaches. The key idea in this
method is to perform a computationally efficient search that is
equivalent to exhaustive search by exploiting the special form
of the objective function to optimize, which arises from the
limited interaction of superimposed signals (i.e. Gaussian line
profiles) with few of their closest neighbors. This special form,
so-called as local interaction in [26], yields to a Markovian-
like property of the globally optimal solutions (in the sense of
deterministic dependence, rather than statistical dependence)
allowing us to break the optimization problem into smaller
subproblems. The resulting dynamic programming (DP) algo-
rithm has a computational cost that is linear in the number
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of superimposed signals as opposed to the exponential cost in
exhaustive search.

A. Local Interaction Signal Model

The development of the dynamic programming algorithm
relies on one major assumption: local interaction, implying
that each superimposed signal interacts (overlaps) with only
a few of its closest neighbors. Let r ≥ 1 be the number of
closest neighbors with which each superimposed signal over-
laps on both sides. Then, mathematically the local interaction
model [26] is expressed as

hi (�i )
∗h j (� j ) ≈ 0 for |i − j | > r. (19)

This requires that the i th and j th columns of H(�), denoted
by hi (�i ) and h j (� j ) (associated with the i th and j th super-
imposed signals), are approximately orthogonal if they are
separated by more than r columns. (Note that the i th column
of H(�), hi (�i ), contains the contributions of the i th super-
imposed signal to measurements at all detector pixels.)

Suitability of this local interaction model to our problem
follows from the Gaussian shape of superimposed signals and
a Cramer-Rao bound analysis. Note that in our observation
model, superimposed signals are Gaussian line profiles, each
centered around a different pixel on the detector (hence most
of its energy is concentrated around that pixel). Therefore,
for each Gaussian, the interaction (overlap) is limited to the
closest neighboring Gaussians and is determined by the width
of the Gaussian, which itself is determined by the amount of
dispersion in the instrument (i.e. higher dispersion results in
wider width, hence larger interaction). Therefore, the extent
of interaction, r , depends on the amount of dispersion, which
is a design choice for the instrument.

Moreover, a study of the Cramer-Rao bound, a lower
bound on estimation uncertainties [42], [43], reveals that large
dispersion (such that more than a few Gaussians overlap with
each other) is not an optimal design choice because it results in
significantly larger errors in the parameter estimates [28], [29].
That is, useful instrument models can be restricted without loss
of generality to Gaussian line profiles which interact only with
few of their closest neighbors (typically, r ≤ 4).

A more general discussion of suitability of the local interac-
tion model to a wide class of separable least squares problems
has been given in [26]. It was shown, based on Cramer-Rao
bound analysis, that in many instances superimposed signals
interacting with more than a few neighbors cannot be separated
to any meaningful accuracy; that is, useful models can be
restricted to those with local interaction.

Other than the amount of dispersion in the instrument, there
are other factors that affect the choice of r from the algorithmic
point of view. As will be shown in the next two sections, the
choice of r , which impacts the approximation in (19), provides
a mechanism for making a tradeoff between the accuracy
of DP estimates (in terms of closeness to the desired MAP
estimates) and computational complexity.

B. Dynamic Programming Algorithm

The dynamic programming algorithm presented in this
paper is an extension of a previously proposed method for

parameter estimation of superimposed signals [26], [27]. This
algorithm was presented for the maximum likelihood problem
and when each superimposed signal interacts with only one
neighbor on both sides. Here we extend the algorithm to
the MAP framework (that involves priors) and to superim-
posed signals interacting with arbitrary number of neighbors.
A preliminary version of the extended MAP algorithm was
presented in [44].

For simplicity and without loss of generality, we ignore
the weights in the least squares term of the MAP functional
in (18), and treat the problem with identical weights of unity.
The more general case can be simply handled within this
framework after scaling each measurement vector (ỹai ) and
measurement matrix (Hai (�)) by the standard deviation of
the corresponding measurement noise (σai ).

The main idea in the dynamic programming algorithm is
to break the MAP optimization problem into smaller subprob-
lems that are related to each other recursively. This recursive
multistage optimization process is enabled by the local inter-
action model as follows: for any parameter set (f,�), any
extent of interaction r with 1 ≤ r ≤ M −1, and any pixel k in
the range 1 ≤ k < M − r , the objective function in the MAP
formulation can be decomposed as follows:

‖ỹ − H(�)f‖2 +
M∑

m=1

�(�m)

= ‖ỹ − H(�[k+1:k+r])f[k+1:k+r] − H(�[1:k])f[1:k]‖2

+‖ỹ−H(�[k+1:k+r])f[k+1:k+r]−H(�[k+r+1:M])f[k+r+1:M]‖2

−‖ỹ − H(�[k+1:k+r])f[k+1:k+r]‖2 +
M∑

m=1

�(�m)

+2Re{f∗[1:k]H∗(�[1:k])H(�[k+r+1:M])f[k+r+1:M]}
≈ ‖ỹ − H(�[k+1:k+r])f[k+1:k+r] − H(�[1:k])f[1:k]‖2

+‖ỹ−H(�[k+1:k+r])f[k+1:k+r]−H(�[k+r+1:M])f[k+r+1:M]‖2

−‖ỹ − H(�[k+1:k+r])f[k+1:k+r]‖2 +
M∑

m=1

�(�m)

� J̃ (�),

where �[i: j ] denotes [�i �i+1 . . . � j ], f[i: j ] denotes the cor-
responding similar representation, and H(�[i: j ]) is a submatrix
composed of i th to j th columns of H(�). The approximate
equality holds from the local interaction assumption in (19);
hence, when the local interaction model holds, solving the
MAP problem is equivalent to minimizing J̃ (�).

This decomposed objective function has the generic
functional form of

J̃ (�) = J̃1(�[1:k],� [k+1:k+r]) + J̃2(�[k+1:k+r],�[k+r+1:M])
(20)

with � i = (�i , fi ), where the function J̃1(.) contains the
first term of J̃ (�), and J̃2(.) contains the next two terms,
in addition to the prior terms. This form enables us to
efficiently find the global optimum of J̃(�) via dynamic
programming [45]–[47]. This is because given �[k+1:k+r]
for any k, the variables �1, . . . ,�k and �k+r+1, . . . ,�M
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are decoupled. As a result, if J̃(�) is optimized for a
given �[k+1:k+r] , then the optimal values of �1, . . . ,�k are
a function of only �[k+1:k+r] , and hence can be denoted
as �∗[1:k](�[k+1:k+r]). These optimal values can further be
obtained by optimizing only J̃1(.). This property of the
globally optimal solutions is similar to the Markov property of
random processes (where in our case deterministic dependence
replaces the role of statistical dependence).

This shows that our problem satisfies the principle of
optimality of the theory of dynamic programming [45]: subsets
of an optimal solution of the original problem are them-
selves optimal solutions to its subproblems. This allows us
to efficiently solve the high-dimensional problem by solving
smaller subproblems that are related to each other recursively.
More specifically, if we define the kth subproblem as finding
�∗[1:k](�[k+1:k+r]) for any given �[k+1:k+r], then it can be
solved by using the solution of the (k − 1)th subproblem:

�∗[1:k](�[k+1:k+r])
= arg min

�k∈�
�[1:k−1]∈�∗[1:k−1](�[k:k+r−1] )

J̃1(�[1:k],�[k+1:k+r]). (21)

This limits the search for �[1:k−1] to a reduced set given by
the solution of the (k − 1)th subproblem, and hence yields a
significant computational gain over the exhaustive search of
the original problem. (Indeed, if the (k − 1)th subproblem
has a unique solution, this reduced set contains only one
solution.) The global minimum of J̃(�) can then be computed
recursively through M − r stages, where at the kth stage the
kth subproblem is solved through recursion, while k increases
from 1 to M − r .

As a final observation, we note that each subproblem can
also be simplified. Explicitly, the kth subproblem is

min
�[1:k]∈	k

f[1:k]∈
k

{
‖ỹ − H(�[k+1:k+r])f[k+1:k+r] − H(�[1:k])f[1:k]‖2

+
k∑

m=1

�(�m)

}
, (22)

Here, the minimization over �[1:k] can be solved separately by
eliminating f[1:k] from (22) based on the variable projection
technique of separable nonlinear least squares problems [32].
This results in the following equivalent problem:

min
�[1:k]∈	k

{
‖P⊥

H(�[1:k])[ỹ − H(�[k+1:k+r])f[k+1:k+r]]‖2

+
k∑

m=1

�(�m)

}
, (23)

where P⊥
A = I − A(A∗A)−1A∗ is the projection matrix onto

the orthogonal complement of the column space of A.
With all these observations, the steps in the dynamic

programming algorithm are summarized below.

1) Initialization Stage (k = 1):

a) For each (�[2:1+r], f[2:1+r]) ∈ �r , solve the
following problem

�̂[1:1](�[2:1+r], f[2:1+r]) = arg min
�1∈	

{‖P⊥
H(�[1:1])[ỹ − H(�[2:1+r])f[2:1+r]]‖2 + �(�1)},

through exhaustive search over �1 ∈ 	.
b) Record the optimal values as a function of

�[2:1+r]:

�∗[1:1](�[2:1+r]) = {�[1:1] ∈ 	 : �[1:1]
= �̂[1:1](�[2:1+r], f[2:1+r])

for some f[2:1+r] ∈ 
r }.
2) Update Stages (k = 2, . . . , M − r):

a) For each (�[k+1:k+r], f[k+1:k+r]) ∈ �r , solve the
following problem

�̂[1:k](�[k+1:k+r], f[k+1:k+r]) = arg min
�k∈	

�[1:k−1]∈�∗[1:k−1](�[k:k+r−1]){
‖P⊥

H(�[1:k])[ỹ − H(�[k+1:k+r])f[k+1:k+r]‖2

+
k∑

m=1

�(�m)

}
,

through exhaustive search over �k ∈ 	 and
�[1:k−1] ∈ �∗[1:k−1](�[k:k+r−1]).

b) Record the optimal values as a function of
�[k+1:k+r] :

�∗[1:k](�[k+1:k+r])
= {

�[1:k] ∈ 	k :
�[1:k] = �̂[1:k](�[k+1:k+r], f[k+1:k+r])
for some f[k+1:k+r] ∈ 
r}.

3) Final Stage:
a) To obtain the final estimate of �, solve the follow-

ing problem

�̂ = arg min
�[M−r+1:M]∈	r

�[1:M−r]∈�∗[1:M−r](�[M−r+1:M])

{‖P⊥
H(�[1:M])ỹ‖2 +

M∑
m=1

�(�m)
}
, (24)

through exhaustive search over �[M−r+1:M] ∈ 	r

and �[1:M−r] ∈ �∗[1:M−r](�[M−r+1:M]).

b) Estimate of f is then given by

f̂ = [H∗(�̂)H(�̂)]−1H∗(�̂)ỹ. (25)

The relation of the dynamic programming algorithm to the
MAP problem is stated in the following theorem. This theorem
is a generalization of [26, Th. 5].

Theorem 1: If the local interaction model holds exactly for
some r ≥ 1, i.e.

hi (�i )
∗h j (� j ) = 0 for |i − j | > r, (26)



OKTEM et al.: PARAMETRIC ESTIMATION APPROACH TO INSTANTANEOUS SPECTRAL IMAGING 5715

for all i, j = 1, . . . , M, then the estimates obtained with the
dynamic programming algorithm (with this value of r) are
same as the MAP estimates obtained by solving (18).

Proof: See Appendix. �
This theorem shows that the exact MAP estimates can be
obtained with the DP algorithm when the local interaction
model holds exactly (i.e. with exact orthogonality). However,
for our spectral imaging problem, exact orthogonality as
in (26) is not possible because of the Gaussian nature of the
overlapping signals, hence there is some unavoidable deviation
from exact orthogonality. Fortunately, it has been shown, under
some regularity conditions, that the dynamic programming
algorithm is robust in the sense that deviations from exact
orthogonality continuously perturb the DP estimates from the
exact MAP estimate, and moreover, the resulting deviation
from the exact MAP estimate is upper-bounded by a constant
that is proportional to the deviation from exact orthogonal-
ity [27]. Therefore, for any well-conditioned problem, if the
deviation from orthogonality is small enough, then the DP
estimates are close to the desired MAP estimate. As a result,
the accuracy of the DP estimates is controlled by the amount of
deviation from exact orthogonality, which is indeed controlled
by the choice of r . Therefore, as the value of r is increased, the
accuracy of DP estimates will be improved. In practice, the DP
estimates can be used as initialization for a local optimization
method to obtain the exact global MAP estimate.

As a final remark, we note that this parameter estimation
algorithm is quite general, and it can be applied to other
problems involving different superimposed signals and pri-
ors. Superimposed signal models and the resulting separable
nonlinear least squares problems are of wide interest in various
applications such as sensor array processing, communications,
imaging, robotics, and vision [32]. Two commonly encoun-
tered problems are estimation of frequency and amplitude of
superimposed sinusoids, and estimation of position, width, and
amplitude of overlapping pulses of given shape (as our prob-
lem) [26]. The dynamic programming algorithm is applicable
to any such separable nonlinear least squares problem for
which the local interaction signal model is suited.

C. Computational Aspects

We now consider the computational requirements of
the generalized dynamic programming algorithm. Note that
nonconvex minimization problem at each stage is solved
through exhaustive search over the parameter space restricted
by the constraint sets. This requires discretization of the search
space to a finite number of parameter values. Let q be the
number of quantization levels used in exhaustive search for
each scalar parameter, and n and p be the number of scalar
parameters in each �m and fm , respectively. (In our problem,
we have n = 2 and p = 1 with the parameters in �m being
�m and εm .)

For the minimization problem at each stage, we need to
evaluate objective functions of the form

‖P⊥
H(
̃1)

(ỹ − H(
̃2)f)‖2 + �((
̃1)). (27)

We will simply state the computational requirement in terms
of the number of function evaluations of this form (although

these function evaluations have different costs at different
stages).

At the kth stage, the objective function needs to be evalu-
ated for all possible values of �k and �[1:k−1]. Assuming
that each subproblem has a unique solution, the recorded
set �∗[1:k−1](�[k:k+r−1]) has at most the size of the vector
f[k:k+r−1]; therefore, there are at most (q p)r different values
for �[1:k−1]. With qn possible values for �k , the objective
function at the kth stage needs to be evaluated qrp+n times.
Moreover, this exhaustive search is repeated for every possible
value of (�[k+1:k+r], f[k+1:k+r]), hence q(p+n)r times. Because
there are a total of M−r −1 update stages, the total number of
objective function evaluations at these stages is (M − r − 1)×
q(p+n)r × qrp+n = (M − r − 1)qr(2p+n)+n . Using a similar
argument, the initialization and final stages require qr(p+n)+n

and qr(p+n) function evaluations, respectively. Therefore,
it follows that the total computational effort of the dynamic
programming algorithm is of O(qr(2p+n)+n), while the
exhaustive search of the original problem over the entire
parameter space is of O(q M(p+n)). Hence the computational
cost is exponential only in the number of interacting signals, r ,
while linear in the total number of superimposed signals, M ,
as opposed to the exponential cost in M in exhaustive search
of the original problem. With typically M � r , this shows
the computational efficiency of the dynamic programming
algorithm compared to the exhaustive search of the original
problem over the entire parameter space.

As mentioned before, there exists a bounded discrep-
ancy between DP estimates and the global MAP estimates
because of the approximation in the local interaction model.
A second source of discrepancy will arise from performing
the optimization (exhaustive search) at each stage over a dis-
cretized parameter space (rather than over continuous values
of the parameters). Clearly, the discretization needs to be fine
enough to remain close to the desired global MAP estimates.
In practice, a local optimization method initialized with DP
estimates will be used subsequently in order to refine these
estimates and obtain the exact global MAP estimate.

As a final remark, we note that the computational complex-
ity of the DP algorithm can be further reduced through parallel
implementations of the dynamic programming algorithm [48],
or through the approximate version of the algorithm [49]
which has significantly lower computational cost.

V. SAMPLE APPLICATION

In this section, we illustrate the performance of the instan-
taneous spectral imaging technique and the MAP estimation
framework for an application in solar spectral imaging [1].
For this, we consider a prominent solar emission line in the
extreme ultraviolet (EUV) regime, with a central wavelength
of λ0 = 19.512 nm. Our goal is to estimate the parameters
of this emission line (consisting of integrated intensity, line
width and Doppler shift parameters) within a 2D FOV from
the observations of the instantaneous spectral imager. These
emission line parameters yield estimates of the key physical
parameters of the Sun’s extended atmosphere such as tem-
perature, plasma density and velocity, and hence enable the
investigation of the dynamic plasma behavior [50], [51].
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Fig. 4. Normalized histograms of line widths and Doppler shifts for the
solar spectral imaging application. Fitted distributions are shown (in red) on
top of the histograms.

A. Estimation of the Prior Distributions

To apply the MAP approach, we need to specify the prior
distributions of line widths, �m , and Doppler shifts, εm .
The choice of these priors is application-dependent. Formerly,
parameters at different pixels are assumed to be independently
distributed. Here we further treat them as having the same
distribution, hence as independent and identically distributed
random variables from pixel-to-pixel (which is approximately
true for quite-Sun regions). Therefore two density distribu-
tions, one for line widths �m and one for Doppler shifts εm ,
need to be estimated.

For this, we use quite-Sun observations made with a
conventional pushbroom (slit) spectrometer [51] during
December of 2006. Each observation with a slit is associated
with a 1D portion of the scene admitted through the slit, and
arrives at a different time instance. Here we treat the line
widths and Doppler shifts obtained from slit data, i.e. �m(t)
and εm(t), as independent and identically distributed (i.i.d.)
over space m and stationary over time t . With this, each slit
data obtained at a different time instance and slit position pro-
vides a different 1D realization of the line widths and Doppler
shifts. Figure 4 shows the resulting histograms obtained from a
large set of slit data. For density estimation, the histograms of
line widths and Doppler shifts are normalized by the number
of total observations (so that bin counts sum to one). Here we
note that the parameters in the histograms are shown in pixel
units, rather than in physical units, in order to match the units
in the parametric model. The implicit step in this conversion
is discussed in [28] and [29].

Because parameter values are clustered around one value in
the histograms, Gaussian distribution is used to model their
density distributions:

�m ∼ N(μ�, σ 2
�), (28)

εm ∼ N(με, σ
2
ε ), (29)

with each parameter i.i.d. over pixels, (μ�, σ 2
�) denoting the

mean and variance of the distribution of line widths, and
(με, σ

2
ε ) denoting the mean and variance of the distribution

of Doppler shifts. These mean and variance parameters are
respectively estimated from the data using the maximum
likelihood approach, which are then given by the sample
mean and sample variance [52]. Gaussian distributions with
these estimated parameters are shown (in red) on top of the
histograms. The resulting prior terms to be used in the MAP

estimation are then given by

�(�m) = (�m − μ�)2

σ 2
�

+ (εm − με)
2

σ 2
ε

, (30)

for all m = 1, . . . , M .

B. Numerical Results

Computer simulation results are presented to demon-
strate the effectiveness of the parametric MAP approach for
estimating the spectral line parameters from the measure-
ments of instantaneous spectral imager. For this, we work
with a portion of the slit data used in Section V-A. The
spectral line parameters obtained from this solar data are used
to simulate the measurements of the instantaneous spectral
imager. More explicitly, for a detector of size 100×100 pixels
(i.e. M = 100), the measurement ỹa along each detec-
tor column is simulated based on the parametric model in
equation (13) (i.e., as the superposition of the Gaussian line
profiles characterized with these spectral line parameters).
Such simulated measurements are obtained in three different
orders a ∈ {0,+1,−1}. Also for each order, the additive noise
term, na , is randomly and independently generated according
to Gaussian distribution, where each component has zero mean
and variance of σ 2. The first row of Fig. 5 shows an example
of the simulated noisy measurements with a noise standard
deviation of σ = 2.

In order to estimate the spectral line parameters from these
noisy measurements, the dynamic programming algorithm is
used with the extent of interaction r = 2, hence with the
model that each Gaussian profile, at most, interacts with its
two closest neighbors on both sides. To define the constraint
sets involved, line width and Doppler shift parameters are
restricted to the ranges observed in the histograms (see Fig. 4).
Constraining all integrated intensity parameters to a single
range likewise would require a large amount of quantization
levels in the algorithm and hence computational load, because
the dynamic range of intensities over all pixels is large
(see Fig. 6a). Instead, a different range is assigned to each
integrated intensity parameter at a different pixel. In particular,
each intensity parameter is constrained to lie around the value
of the zeroth order measurement at that pixel, since the zeroth
order measurements are Gaussian distributed around the true
integrated intensities.

The parameter space restricted by these ranges must also
be discretized (to a finite number of values) for the exhaus-
tive search in the DP algorithm. A straightforward option is
uniform discretization [26] of each range where the number of
quantization levels is chosen based on the Cramer-Rao error
bounds of the parameters [28], [29]. Instead, here we choose a
nonuniform quantization grid to take into account the normal
distribution of the parameters. More specifically, the grid is
designed by dividing each parameter range to regions of equal
probability, rather than of equal length. Hence the resulting
grid is more dense around the mean of the parameter, where
most of its realizations will lie.

The estimates obtained with the dynamic programming
algorithm are refined by a gradient-based interior-point
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Fig. 5. Noisy observations in a solar imaging application and the estimated parameters of the Gaussian spectral lines from these observations. First row (from
left to right): Simulated measurements of the instantaneous spectral imager at three diffraction orders 0, +1, and −1 on a detector of size 100 × 100 pixels.
Second row (from left to right): Estimates of integrated line intensities, line widths, and Doppler shifts, which fully characterize the spectra at all spatial
locations. (The true spectral line parameters are obtained from real solar data, and line width and Doppler shift parameters are shown in pixel units.) Third
row (from left to right): The estimation errors for integrated intensities, line widths, and Doppler shifts as represented by the absolute difference between the
estimated and true parameters. (The absolute differences for integrated intensities and line widths are normalized by their corresponding true values).

algorithm (a local optimization method). For the overall eval-
uation of the estimation, estimated parameters in each column
are compared with their true values by using (i) the nor-
malized absolute difference error Edi f f (m) = | fm − f̂m |/ fm ,
(ii) average absolute difference Eaad = ∑

m | fm − f̂m |/M ,
and (iii) the root-mean-square (RMS) error Erms =
(
∑

m( fm − f̂m)2/M)1/2 (similarly for �m ’s and εm ’s.)
The middle row of Figure 5 shows the estimates of the

integrated intensities, line widths, and Doppler shifts obtained
from the given noisy observations. The last row of Fig. 5 also
shows the absolute differences between the estimated and true
parameters at each pixel. Here the absolute differences for inte-
grated intensities and line widths are also normalized by their
corresponding true values. The average absolute differences
are typically less than 1% for intensities, 2.5% for line widths
and 0.02 (pixels) for Doppler shifts; whereas the RMS errors
are typically less than 2 for intensities, and 0.02 (pixels) for
line widths and Doppler shifts. When converted to the physical
units, this estimation with as low as three measured orders has
the same order of accuracy as state-of-the-art slit spectroscopy
used for this application [51], but with the added benefit of an
instantaneous 2D FOV. Note that measuring more than three
orders can help further to reduce the errors in the parameter

estimates. The quantification of the amount of improvement
with additional orders is a topic of future study.

Figure 6 additionally illustrates the estimated spectra at
two spatial locations and the estimates of the spectral line
parameters over a column of the 2D scene. Figure 6a shows
these two spatial locations and the column considered. The
spectrum at each spatial location is a Gaussian function char-
acterized by the spectral line parameters at that location and is
shown in Fig. 6b both for the estimated and true parameters.
Figure 6c also shows the estimates of integrated intensities,
line widths, and Doppler shifts over all spatial locations along
the marked column, and illustrates good agreement with the
true values.

To evaluate the performance of the parametric MAP
approach further, we investigate the effect of the noise
standard deviation (hence SNR) on the estimation accuracy
of the spectral line parameters. For this, Monte Carlo
simulations are performed for a total of 40 random para-
meter sets (generated according to the prior distributions),
and the numerical averages of RMS errors from these runs
are computed for cases with varying noise standard deviation.

Fig. 7 shows the average RMS errors of the parameter esti-
mates as a function of the noise standard deviation. To indicate
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Fig. 6. Illustrations of the estimated spectra at two spatial locations and
the estimates of the spectral line parameters over a column of the 2D scene.
The two spatial locations and the column are marked in the spatial intensity
image in (a). The estimated and true spectra associated with the marked
spatial locations are shown in (b). (Here each spectrum is a Gaussian function
characterized by the spectral line parameters at that spatial location.) Estimates
of integrated intensities, line widths, and Doppler shifts associated with all
spatial locations along the marked column are shown in (c).

the improvement in the accuracy of estimates as compared to
a trivial estimate where all parameters are set to their known
mean values without any estimation (more specifically, line
width and Doppler shift estimates are set to mean values in
their prior distributions and integrated intensity estimates are
set to the zeroth order measurements), the RMS error of this
trivial estimate is also shown in the figures with a dashed line.
As seen, for the noise-free case with σ = 0, the true parameter
values are always obtained. Moreover, the errors for integrated
intensities strongly depend on the noise standard deviation
since the zeroth order measurement directly provides a noisy
observation of integrated intensities. In fact, for the low noise
regime the intensity estimates obtained with the DP algorithm
do not show significant improvement over the zeroth order
measurement.

For the line widths and Doppler shifts, the dependence on
the noise standard deviation σ is weaker at the high noise
regime. This is because, in this regime, the estimation is highly
dominated by the priors (rather than the measurements). Also
we note that the estimation accuracy is comparable to the slit
spectroscopy when σ is smaller than 4 (corresponding to an
SNR of ∼ 50 when SNR is defined as the ratio of the signal

Fig. 7. RMS errors for the estimates of the intensity, width, and Doppler shift
parameters as a function of the noise standard deviation when {0,+1,−1}
orders are measured along a 50-pixel detector column (i.e. M = 50). For
comparison, dashed lines show the RMS errors of the trivial estimates where
all parameters are set to their known mean values, without any estimation.

mean to the standard deviation of the noise). To achieve similar
accuracy at higher noise levels, more spectral orders (than
three) will be needed.

VI. CONCLUSION

We have presented a new spectral imaging modality with
a slitless configuration that admits 2D instantaneous FOV.
In this instantaneous spectral imaging technique, spectrally
dispersed images of a 2D scene are simultaneously mea-
sured in several diffraction orders. The parameters of the
spectral lines (within the scene) are then estimated by using
these measurements with a parametric model and solving
the resultant inverse problem computationally. The associated
inverse problem can be viewed as a multiframe semi-blind
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deblurring problem with shift-variant blur, and is tackled
here by using a MAP estimation framework where the prior
distributions of the spectral line parameters are estimated from
the measurements of existing conventional slit spectrometers.
An efficient dynamic programming algorithm is developed to
find the global optimum of the resulting nonconvex MAP
problem. This algorithm yields parameter estimates that are
close to the global optimum of the MAP problem, which can
then be refined by using a local optimization method.

We have investigated the application of the technique in
solar spectral imaging. Computer simulation results suggest
that spectral line parameters can be estimated with the
same order of accuracy as the conventional slit spectroscopy,
but with the added benefit of providing an instantaneous
2D field-of-view. Moreover, this estimation accuracy is achiev-
able with as low as three dispersed images. This illustrates the
advantage of the parametric approach over the tomographic
approaches [4]–[8] which generally require significantly larger
number of dispersed images.

It is important to note that this parametric approach is
specifically designed for objects that have spectra consisting
of Gaussian-shaped spectral lines. Here we provide a means
of estimating the parameters of each spectral line over a
2D FOV, provided that dispersed images of the scene result-
ing from different spectral lines are non-overlapping at the
detector. The extension of the approach to the cases with
overlapping dispersed images will require extension of our
formulation and treatment to the cases where the spectrum for
any spatial location consists of multiple Gaussians, rather than
a single Gaussian, and will be a topic for future study.

To conclude, this parametric approach to spectral imaging
offers the means for effective estimation of spectral line
parameters over an instantaneous 2D FOV. The estimated
spectral line parameters can be used to infer the key physical
parameters of a radiating medium (such as the temperature,
density, and flow speed of the particles involved in the radi-
ation). These inferred parameters enable the investigation of
the dynamic behavior by revealing how currents and heat flow
through the radiating medium. Such a capability resulting from
the presented technique in this paper is particularly useful for
studying the spectra of dynamic scenes in a wide variety of
space remote sensing applications.

APPENDIX

PROOF OF THEOREM 1

This proof is a generalization of [31, Proof of Th. 5]
to r ≥ 1 case, and presented here for completeness.

Let �̂ denote the estimate obtained with the DP algorithm,
and {�o, fo} denote the exact MAP estimate given by
solving (18), hence

{�o, fo} = arg min
f∈
M

�∈	M

{||ỹ − H(�)f ||2W +
M∑

m=1

�(�m)
}
. (31)

Our goal is to show that �̂ = �o. Note that this will imply
that f̂ = fo since f̂ is obtained from �̂ using (25).

First, we use induction to prove that

�̂[1:k](�o
[k+1:k+r], fo

[k+1:k+r])=�o
[1:k] for k=1, . . . , M−r .

(32)

For this, similar to (25), we set

f̂ [1:k](�[k+1:k+r], f[k+1:k+r])
= [H∗(�̂[1:k])H(�̂[1:k])]−1H∗(�̂[1:k])

× (ỹ − �[k+1:k+r]f[k+1:k+r]) (33)

to the optimal values of the problem (22).
Then, from the update equation of � in the algorithm,

we have

{�̂[1:k](�[k+1:k+r], f[k+1:k+r]), f̂ [1:k](�[k+1:k+r], f[k+1:k+r])}
= arg min

�k∈	

�[1:k−1]∈�∗[1:k−1](�[k:k+r−1])
f[1:k]∈
k

{‖ỹ − H(�[k+1:k+r])f[k+1:k+r]

− H(�[1:k])f[1:k]‖2 +
k∑

m=1

�(�m)
}
. (34)

We first prove the base case of induction for k = 1:

{�̂[1:1](�o[2:1+r], fo[2:1+r]), f̂ [1:1](�o[2:1+r], fo[2:1+r])}
= arg min

�1∈	

f1∈


{‖ỹ−H(�o[2:1+r])fo[2:1+r]−H(�[1:1]) f1‖2+�(�1)}

= arg min
�1∈	

f1∈


{‖ỹ − H(�o[2:1+r])fo[2:1+r] − H(�[1:1]) f1‖2

+ �(�1) + ‖H(�o
[2+r :M])f

o
[2+r :M]‖2

− 2Re{(ỹ − H(�o[2:1+r])fo[2:1+r] − H(�[1:1]) f1)
∗

× H(�o[2+r :M])fo[2+r :M]} +
M∑

m=2

�(�o
m)

}

= arg min
�1∈	

f1∈


{‖ỹ − H(�o[2:M])fo[2:M] − H(�[1:1]) f1‖2

+ �(�1) +
M∑

m=2

�(�o
m)

}

= {�o
1, f o

1 }. (35)

The second equality follows from (26) which implies that
H(�[1:1])∗H(�o

[2+r :M]) = 0, and from the fact that adding
terms that are independent of �1 and f1 do not affect the
minimization. The fourth equality follows from the optimality
of {�o, fo}.

Now, for the inductive step, suppose that

�̂[1:i](�o
[i+1:i+r], fo

[i+1:i+r]) = �o
[1:i] (36)

for some i ∈ {1, 2, . . . , M − r}. We want to prove that the
statement holds for i + 1. Similar to the base step, we have
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{�̂[1:i+1](�o[i+2:i+r+1], fo[i+2:i+r+1]),
f̂ [1:i+1](�o[i+2:i+r+1], fo[i+2:i+r+1])}

= arg min
�i+1∈	

�[1:i]∈�∗[1:i](�[i+1:i+r])
f[1:i+1]∈
i+1

{
‖ỹ − H(�o[i+2:i+r+1])fo[i+2:i+r+1]

− H(�[1:i+1])f[1:i+1]‖2 +
i+1∑
m=1

�(�m)

+ ‖H(�o
[i+r+2:M])f

o
[i+r+2:M]‖2

− 2Re{(ỹ − H(�o
[i+2:i+r+1])f

o
[i+2:i+r+1]

− H(�[1:i+1])f[1:i+1])∗H(�o[i+r+2:M])

× fo[i+r+2:M]} +
M∑

m=i+2

�(�o
m)

}

= arg min
�i+1∈	

�[1:i]∈�∗[1:i](�[i+1:i+r] )
f[1:i+1]∈
i+1

{
‖ỹ − H(�o

[i+2:M])f
o
[i+2:M]

− H(�[1:i+1])f[1:i+1]‖2 +
i+1∑
m=1

�(�m)

+
M∑

m=i+2

�(�o
m)

}
(37)

where the first equality follows from (34), and from (26) which
implies that H(�[1:i+1])∗H(�o

[i+r+2:M]) = 0. Also, by the
optimality of {�o, fo},

{�o[1:i+1], fo[1:i+1]}
= arg min

�[1:i+1]∈	i+1

f[1:i+1]∈
i+1

{
‖ỹ − H(�o[i+2:M])fo[i+2:M] − H(�[1:i+1])

× f[1:i+1]‖2+
i+1∑
m=1

�(�m)+
M∑

m=i+2

�(�o
m)

}
(38)

If we now compare (37) and (38), the objective functions
are the same, while the constraint sets are different with
the latter one containing the former one. But because the
minimizer �o[1:i+1] of (38) is yet an element of the smaller
constraint set in (37), it must also be the minimizer of (37).
(This follows because �o

[1:i] = �̂[1:i](�o
[i+1:i+r], fo

[i+1:i+r]) by
the assumption (36), and hence �o[1:i] ∈ �∗[1:i](�[i+1:i+r])).
Therefore,

{�̂[1:i+1](�o
[i+2:i+r+1], fo

[i+2:i+r+1]),
f̂ [1:i+1](�o

[i+2:i+r+1], fo
[i+2:i+r+1])} = {�o

[1:i+1], fo
[1:i+1]}.

(39)

This completes the induction, hence the statement in (32)
is proved. With k = M − r , this gives that

�̂[1:M−r](�o[M−r+1:M], fo[M−r+1:M]) = �o[1:M−r], (40)

as a result, �o
[1:M−r] ∈ �∗[1:M−r](�[M−r+1:M]). Using this

in (24) together with the similar arguments used above, it is
easily seen that �̂ = �o.
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